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ABSTRACT

We present the redshift calibration methodology and bias estimates for the cosmic shear analysis of the the fifth and final data
release (DR5) of the Kilo-Degree Survey (KiDS). KiDS-DR5 includes a greatly expanded compilation of calibrating spectra, drawn
from 27 square degrees of dedicated optical and near-IR imaging taken over deep spectroscopic fields. The redshift distribution
calibration leverages a range of new methods and updated simulations to produce the most precise N(z) bias estimates used by
KiDS to date. Improvements to our colour-based redshift distribution measurement method (SOM) mean that we are able to use
many more sources per tomographic bin for our cosmological analyses, and better estimate the representation of our source sample
given the available spec-z. We validate our colour-based redshift distribution estimates with spectroscopic cross-correlations (CC).
We find that improvements to our cross-correlation redshift distribution measurement methods mean that redshift distribution
biases estimated between the SOM and CC methods are fully consistent on simulations, and the data calibration is consistent to
better than 2σ in all tomographic bins.

Key words. cosmology: observations – gravitational lensing: weak – galaxies: photometry – galaxies: distances and redshifts –
surveys

1 Introduction

Wide-field imaging surveys with large mosaic CCD cameras
and broad-band optical and near-infrared (NIR) filters have
entered a crucial era where significant fractions of the sky
are being surveyed. The current generation called stage-III
(Sevilla-Noarbe et al. 2021; Aihara et al. 2022; Wright et al.
2024) covers areas of more than a thousand square degrees
and will soon be superseded by stage-IV surveys (Euclid
Collaboration: Mellier et al. 2024; Ivezić et al. 2019) cover-
ing an order of magnitude larger areas at similar or greater
depths. Perhaps the most crucial analysis step for virtually
any application of these surveys is to add information about
the radial distance of the very large number of objects (typi-
cally of order 107 – 109) reliably detected in such surveys. In
the absence of spectroscopic redshifts for these huge sam-
ples of (mostly) galaxies, photometric redshifts (photo-z;
for a recent review see Newman & Gruen 2022) based on
broad-band multi-colour photometry are used to solve this
problem.

The estimation of these broad-band photo-z for faint
targets has been surprisingly stable over the past two
decades (Hildebrandt et al. 2010). All stage-III surveys
base their main scientific analyses still on template-fitting
techniques developed more than 20 years ago (e.g. Beńıtez
2000). This reflects the maturity of these techniques and
their close-to optimal use of information. Until the arrival
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of large, complete spectroscopic training sets down to the
magnitude limits of these wide-field imaging surveys, which
would enable highly precise and accurate photometric red-
shifts estimated via machine-learning techniques, this situ-
ation is unlikely to change (Newman et al. 2015).

These photo-z estimates of individual galaxies have well
characterised error distributions with typical scatter of a
few per cent around the true redshifts and equally a frac-
tion of a few per cent of catastrophic outliers. These num-
bers have also been essentially unchanged for a long time.
The main reason for this perceived stagnation in individual
photo-z quality is the fact that this performance is not the
limiting factor for the main science driver of such imaging
surveys: weak gravitational lensing (WL).

The gravitational lensing effect is integrated along the
line-of-sight and – in the case of WL – measured statistically
by averaging over shear estimates of very large ensembles of
galaxies. As such, a significant improvement in individual
galaxy photo-z is not required. Instead, individual galaxy
photo-z values are used only to divide the galaxy distribu-
tion into relatively broad, so-called tomographic bins (hun-
dreds of Mpc comoving) along the line-of-sight.

It is the ensemble redshift distribution, N(z), that has –
rightly – received most attention in WL measurements of
the recent past as its accuracy is directly related to the
accuracy of the cosmological parameters estimated from
WL surveys. The increasing statistical power, hence, comes
with a paralleled increase in the required accuracy of these
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N(z), most importantly expressed by their mean redshifts
(Huterer et al. 2006). Higher-order moments of the N(z) are
less important for cosmic shear but very relevant for other
probes like galaxy clustering McLeod et al. (2017); Reis-
chke (2024). Here, we concentrate on the former and leave
the quantification of calibration uncertainties of the width,
skewness, etc. of the N(z) to future work.

For the current-generation stage-III surveys, the mean
redshifts have to be controlled at the per-cent level (Myles
et al. 2021; Rau et al. 2023; Hildebrandt et al. 2021). Any
larger bias in the redshifts would lead to a bias in the cos-
mological conclusions that would rival the statistical uncer-
tainty. Calibration techniques are used to estimate the N(z)
and simulations are employed to estimate residual biases,
which can be used to re-calibrate the data. The uncertainty
in this re-calibration is typically marginalised over in the
cosmological inference.

The Kilo-Degree Survey (KiDS Wright et al. 2024) is
conducted with OmegaCam mounted at the Cassegrain fo-
cus of the ESO VLT Survey Telescope (VST) on Paranal,
Chile, and complemented by the VISTA1 Kilo Degree In-
frared Galaxy Survey (VIKING Edge et al. 2013) observed
from a neighbouring mountaintop. Together, these two sur-
veys form a unique 9-band data set covering the near-UV
to near-IR with (in terms of depth) well-matched high-
resolution images over an area of ∼ 1 350 deg2. With this ex-
tensive filter coverage, KiDS has the potential of estimating
well-controlled photo-z down to its magnitude limit (r ∼ 24
for a typical WL source at a signal-to-noise ratio of ∼ 10)
and estimating accurate N(z) all the way to z <∼ 2, paving
the way for similar multi-camera, optical+NIR efforts with
e.g. Euclid.

While individual galaxy photo-z and their quality for
the complete KiDS data set are covered in the data re-
lease 5 paper (dr5; Wright et al. 2024), here we describe
the redshift calibration approach, i.e. the estimation of the
N(z), and their characterisation with simulations. This is
the final paper in a list of publications that have devel-
oped the KiDS redshift calibration strategy (Hildebrandt
et al. 2017, 2020, 2021; Wright et al. 2020a; van den Busch
et al. 2020, 2022). Similar to previous efforts, we use two
complementary techniques to estimate the N(z), one that is
colour-based and another one that is position-based. Both
of these techniques leverage the power of spectroscopic sur-
veys that overlap with KiDS or the newly compiled KiDZ
data set (i.e. the KiDS redshift calibration fields). The kind
of spectroscopic surveys used for the two techniques are
quite different though, which is highly beneficial for sys-
tematic robustness and independence of these methods.

The KiDS data, the KiDZ calibration fields, the cal-
ibrating spectroscopic surveys, and the tomographic bin-
ning approach are described in Sect. 2. The mock cata-
logues that mimic these different data sets are introduced
in Sect. 3. In Sect. 4, the colour-based calibration tech-
nique via a self-organising map (SOM) projection of the
9-dimensional colour space is introduced. This is comple-
mented by a description of the position-based calibration
technique, also known as clustering redshifts (or dubbed CC
for cross-correlation), in Sect. 5. The performance of these
two approaches is evaluated on the simulated mock cata-
logues and presented in Sect. 6. Results on the KiDS/KiDZ

1 Visible and Infrared Survey Telescope for Astronomy

Table 1. Summary of relevant imaging data released in KiDS-dr5
(including KiDZ data).

Telescope & Filter λcen Mag. Lim. PSF FWHM
Camera (Å) (5σ 2′′ AB) (′′)

VST
(OmegaCAM)

u 3 550 24.26 ± 0.10 1.01 ± 0.17
g 4 775 25.15 ± 0.12 0.88 ± 0.15
r 6 230 25.07 ± 0.14 0.70 ± 0.12
i1 7 630 23.66 ± 0.25 0.81 ± 0.18
i2 7 630 23.73 ± 0.30 0.81 ± 0.18

VISTA
(VIRCAM)

Z 8 770 23.79 ± 0.20 0.90 ± 0.10
Y 10 200 23.02 ± 0.19 0.86 ± 0.09
J 12 520 22.72 ± 0.20 0.85 ± 0.07
H 16 450 22.27 ± 0.24 0.88 ± 0.09
Ks 21 470 22.02 ± 0.19 0.87 ± 0.08

data are shown in Sect. 7, which are further discussed in
Sect. 8, before we summarise in Sect. 9.

2 Data

This manuscript presents estimates of redshift distributions
for the wide-field galaxy samples used in KiDS-Legacy. The
KiDS-Legacy data set is described at length in the KiDS
dr5 data release document (Wright et al. 2024, hereafter
W24). Here we summarise the pertinent information from
the release including references to precise sections therein.
We direct the interested reader to the data release docu-
ment for detailed information regarding the data.

The fifth data release of KiDS consists of 1347 deg2 of
weak lensing imaging data, and 27 deg2 of imaging covering
deep spectroscopic calibration fields (with 4 deg2 of over-
lap). All data are observed with both VST and VISTA,
yielding photometry in nine distinct photometric band-
passes (four optical and five near-infrared). Additionally,
the entire wide and calibration footprint was observed twice
in the i-band, yielding two realisations and epochs of the
photometry in this band. These realisations are kept sepa-
rate in our analysis, and are labelled i1 and i2 for distinction
(the impact of the additional i-band measurements on our
photo-z is shown in W24). This leads to a final data set
containing ten photometric bands, which are summarised
in Table 1. Sources in these fields are extracted from the
VST r-band imaging using Source Extractor (Bertin
& Arnouts 1996), within the Astro-WISE analysis environ-
ment (Valentijn et al. 2007; Begeman et al. 2013; McFarland
et al. 2013), approximately 139 million unique sources.

All sources in KiDS-dr5 have photometric information
measured in all available photometric bands. This photo-
metric information is estimated through a form of matched
aperture photometry that ensures consistent flux informa-
tion is extracted from each source across the ten photo-
metric bands, based on the optical r-band, and accounting
for variations in the point spread function (PSF) per-band.
This forced photometry is performed with the Gaussian
aperture and PSF code (GAaP; Kuijken 2008), and details
of the implementation of GAaP in the context of KiDS-dr5
can be found in sections 3.6 and 6 of W24.

After measurement of photometric information in all
bands, the KiDS-dr5 is masked to include only unique
sources that reside in areas of high-quality data in all bands.
This masking process is described at length in section 6.4
of W24, and results in 100 744 685 sources drawn from an
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effective area of 1014.013 deg2(corresponding to an effective
number density of 10.94 arcmin−2).

The lensing portion of the KiDS-dr5 sample is given the
name KiDS-Legacy. As in previous KiDS analyses, the lens-
ing sample contains per-source shape measurements and
corresponding shape-measurement confidence weights esti-
mated using the lensfit algorithm (Miller et al. 2007, 2013).
These shapes are then calibrated with complex image sim-
ulations designed to emulate the properties of the KiDS-
Legacy sample as closely as possible. A detailed description
of these simulations is given in Li et al. (2023), and they are
also summarised here in Sect. 3. The definition of the sam-
ple is provided in detail in section 7.2 of W24, and involves
a series of cuts in magnitude, colour, neighbour distance on-
sky, and shape-measurement quality metrics. Additionally,
Wright et al. (submitted) found that masking of areas with
higher astrometric noise was required to satisfy their cos-
mic shear B-mode null tests, leading to an additional mask-
ing of the survey footprint. The final KiDS-Legacy lensing
sample is defined as the remaining 40 950 607 sources after
these selections, drawn from 967.4 deg2 (corresponding to
an effective number density of 8.81 arcmin−2).

2.1 Calibration data sets

The calibration sample used to estimate redshift distribu-
tions in KiDS-Legacy with the colour-based SOM method
is drawn principally from the KiDZ sample described in sec-
tion 5 of W24. The sample consists of 126 085 sources drawn
from 22 spectroscopic samples/surveys, which have been
compiled following a hierarchy that resolves internal and
external duplicates in the data sets. The hierarchy ranks
the constituents such that we keep spectra preferentially
from the sample that is most likely to provide a reliable
redshift. The details of this hierarchy and the homogenisa-
tion of the various redshift quality metrics are detailed in
W24, the resulting redshift distribution is shown in the top
panel of Fig 1.

The calibration sample for clustering redshifts used in
KiDS-Legacy differs from the one described in W24. As op-
posed to previous work (van den Busch et al. 2020; Hilde-
brandt et al. 2021), we only include samples that cover
multiple KiDS tiles and provide sufficient contiguous over-
lap with KiDS or KiDZ observations, i.e. 2dFLenS (Blake
et al. 2016), SDSS BOSS DR12 (LOWZ and CMASS, Alam
et al. 2015), GAMA DR4 (Driver et al. 2022), and VIPERS
PDR-2 (Scodeggio et al. 2018). We apply additional mask-
ing to ensure a consistent footprint between the KiDS-
Legacy data, the spectroscopic data, and their provided
spectroscopic random catalogues. We remove the relatively
small overlap of 2dFLenS with the northern KiDS patch
and limit the VIPERS data set to a redshift range of 0.6 ≤
z < 1.18 to be consistent with the random catalogues and
to mitigate the incompleteness from the colour sampling
at z < 0.6 (Garilli et al. 2014). Finally, we add 109 381 re-
cently released spectra from the Dark Energy Spectroscopic
Instrument (DESI Collaboration et al. 2016a,b) Early Data
Release. Specifically, we use the designated clustering cat-
alogues containing a subset of the LRG and ELG samples
(see section 4.2 of DESI Collaboration et al. 2024). This
new set of calibration samples for the CC method (bottom
panel of Fig. 1) covers a combined total of more than 80 %
of the KiDS-Legacy footprint (Fig. 2).

Table 2. Spectroscopic redshift samples used for the KiDS-
Legacy redshift calibration.

Survey/Field Nspec Area Density Usage
[deg2] [arcmin−2]

KiDZ compilation 126 085 19.3 3.77 SOM

2dFLenS 22 675 382.4 0.02 CC
BOSS DR12 60 482 422.6 0.04 CC
DESI EDR 109 381 44.2 0.69 CC
GAMA DR4 161 839 136.1 0.33 CC
VIPERS 26 408 9.3 0.79 CC

Notes. The KiDZ spectroscopic compilation is described in W24.
VIPERS data are included in both the KiDZ compilation used
by the SOM and in the sample used for cross-correlations.
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Fig. 1. Redshift distribution of the calibration data used for
KiDS-Legacy. The top panel displays the full KiDZ data in gray
and the proportion of that enters each tomographic bin after
calibrating the fiducial SOM as stacked histogram. The bin edges
are indicated by the dashed vertical lines. The bottom panel
shows the spectroscopic surveys used as calibration samples for
the clustering redshift measurements (also stacked).

Table 2 details all data sets utilised for calibration in
KiDS-Legacy. The table indicates samples that are used
for redshift calibration with the SOM calibration (Sect. 4)
and those which are used for clustering redshifts (Sect. 5).
Their respective redshift distributions are shown in Fig. 1.

2.2 Weight assignment

One important distinction between the calibration fields
and the wide-fields used for lensing is that the cali-
bration fields lack the data-products required for lensfit
shape estimation (specifically individual calibrated expo-
sures, see W24). As such, sources in calibration fields that
do not overlap with the wide-field data do not contain
shape-measurement information, in particular the shape-
measurement weights (see W24 for details about the imag-

Article number, page 3 of 25



A&A proofs: manuscript no. output

130140150160170180190200210220230
4
2
0
2
4

30201001020304050
 / deg

36
34
32
30
28 KiDS

2dFLenS
BOSS
DESI
GAMA

 / 
de

g

Fig. 2. Footprint of the spectroscopic surveys overlapping KiDS and used for the clustering redshift measurements. VIPERS is
exclusive to the KiDZ fields, which are not shown here.

ing differences within the KiDZ fields). Since the shape
weights correlate with the photometric observables, they
present an additional selection which has to be taken into
account in the SOM and the CC calibration.

Therefore, we replicate the lensfit weights in KiDZ us-
ing k-nearest neighbour matching. To each KiDZ galaxy
we assign the lensfit weight of a galaxy from KiDS-dr5
that is closest in r-band magnitude (MAG_AUTO), half-light
radius (FLUX_RADIUS), GAaP major-to-minor axis ratio
(Bgaper / Agaper), photometric redshift (Z_B), and average
PSF size per tile (PSF_RAD).

To validate this process, we run split the KiDS-Legacy
wide-field sample into two halves (by splitting the survey
at RA= 180 degrees), and inherit fake lensfit weights from
one half onto the other. We then compare the inherited
weights to the originally measured ones. For ease of in-
terpretation, we rescale the lensfit weights in this test to
the range w ∈ [0, 1]. We find that the weight inheritance
is robust, having a median residual between the real and
synthetic weights of precisely zero, driven by the vast ma-
jority of sources residing at a true weight of either zero
or one, and being correctly assigned this limiting weight
(thereby having precisely zero residual). The scatter in the
weight residuals is similarly benign, at σ[wtrue−wfake] = 0.09
(a perfectly random assignment of fake weights produces
a scatter of approximately 0.6). As such, we conclude that
the weight inheritance is functioning appropriately.

2.3 Tomographic binning

A central aspect of weak lensing tomography is the choice
of tomographic binning. In previous KiDS analyses, tomo-
graphic bins were defined using a set of cuts in photomet-
ric redshift (zB). For KiDS, these cuts were initially con-
structed to have four bins of fixed width ∆zB = 0.2 between
0.1 < zB ≤ 0.9 (Hildebrandt et al. 2017).2 With the intro-
duction of the VIKING near-infrared data and better high-z
performance of the photometric redshifts, a fifth (higher
redshift) tomographic bin was introduced, which used a
width of ∆zB = 0.3 (0.9 < zB ≤ 1.2) (Hildebrandt et al.
2020). These bins resulted in tomographic bins (for the last
KiDS analysis, see Hildebrandt et al. 2021) that contained

2 We emphasise here the importance of the inequalities used
in these definitions: as the photo-z estimates are discrete with
finite steps of 0.01, whether one uses zB ≤ 0.9 or zB < 0.9 has a
non-negligible impact on the sample definition.

between 2.8 million (bin one) and 8.1 million (bin three)
sources.

This choice of tomography can, however, be shown
to be sub-optimal for cosmic shear tomography signal-to-
noise and figure-of-merit in typical applications. Sipp et al.
(2021) advocate equipopulated bins as a better choice (over
equidistant bins), and we opt to implement this form of
tomography for KiDS-Legacy. Details of our chosen (six)
tomographic bins, such as number densities and ellipticity
dispersions, are provided in Table 3. It should be noted that
the zB binning is chosen a priori based on the SKiLLS sim-
ulations (see Sect. 3 and Li et al. 2023). In combination
with the discreteness of zB, this leads to bins that are only
approximately equipopulated in the KiDS-Legacy data.

3 Simulations

KiDS-Legacy utilises the ‘SKiLLS’ simulation of Li et al.
(2023), as well as an updated version of the MICE2 simu-
lation (Fosalba et al. 2015a,b; Crocce et al. 2015; Carretero
et al. 2015) presented in van den Busch et al. (2020) and
utilised in Wright et al. (2020a). SKiLLS is a multiband
image simulation based on the SURFS dark-matter simu-
lation (Elahi et al. 2018) and Shark semi-analytic model
(Lagos et al. 2018), whereas MICE2 is a simulated galaxy
catalogue derived from the MICE-Grand Challenge simu-
lation, which we post-process with an analytic photometry
model. Both simulations are constructed to replicate the
photometric properties of KiDS and VIKING data in each
of the ugri1i2ZYJHKs bands as well as lensfit shape weights
(beside other aspects like shear, clustering, etc.).

There are two additional differences between SKiLLS
and MICE2 that are worthy of comment. First, MICE2 cov-
ers an on-sky area of about 5000 deg2, whereas SKiLLS is
limited to 108 deg2. Secondly, SKiLLS has a much larger
redshift baseline (0.001 < z < 2.5) than MICE2, which is
limited to 0.07 ≲ z ≲ 1.4 and therefore does not allow us
to simulate the KiDS data in the sixth tomographic bin (or
possible high-z tails of the other bins) with high fidelity.
Due to these differences, we rely on MICE2 to simulate our
clustering redshift analysis (requiring the additional area)
whereas SKiLLS is our primary simulation for the SOM
calibration (covering the sixth bin). Nevertheless, both sim-
ulations are useful where they overlap, since they give us
additional redundancy and allow us to test how our red-
shift estimates depend on the assumptions underlying both
simulations.
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Table 3. Properties of the six KiDS-Legacy tomographic bins and the full source sample, using our fiducial redshift calibration
procedure.

Bin Selection N neff σϵ Ngold neff,gold σϵ,gold mgold neff,gold/neff

1 0.10 < zB ≤ 0.42 7 442 842 1.84 0.27 7 416 371 1.77 0.28 -0.0229 0.963
2 0.42 < zB ≤ 0.58 7 382 526 1.68 0.27 7 359 911 1.65 0.27 -0.0160 0.984
3 0.58 < zB ≤ 0.71 6 803 160 1.52 0.29 6 799 681 1.50 0.29 -0.0113 0.987
4 0.71 < zB ≤ 0.90 6 880 618 1.47 0.27 6 880 432 1.46 0.26 0.0199 0.994
5 0.90 < zB ≤ 1.14 6 477 540 1.35 0.29 6 477 538 1.35 0.28 0.0295 0.998
6 1.14 < zB ≤ 2.00 5 963 921 1.09 0.31 5 960 461 1.07 0.30 0.0445 0.977
1–6 0.10 < zB ≤ 2.00 40 950 607 8.81 0.28 40 894 394 8.79 0.28 0.0037 0.983

Notes. Values of σϵ and neff are computed using Eqs. C.9 and C.12 of Joachimi et al. (2021), respectively. The σϵ values correspond
to the ellipticity dispersion per component. mgold corresponds to the multiplicative shear measurement bias. Statistics in the ‘gold’
columns are computed for gold-selected sources using the gold weights described in Sect. 4.2, and include contributions from
multiplicative shear biases, which are themselves given in the table.

3.1 SKiLLS

The image-simulation based SKiLLS utilises imaging prop-
erties (limiting magnitudes, PSFs, etc.) sampled directly
from the KiDS-1000 data set (Kuijken et al. 2019), such
that the observational parameters are representative of the
parameter distributions therein. However, the base simu-
lations tend to overproduce sources (relative to the data)
at low-resolution and high signal-to-noise, leading to pos-
sible systematic biases in the recovery of shape calibration
values, and which could also cause bias in redshift distri-
bution estimates (as the resolution and signal-to-noise ratio
are correlated with colour and redshift). Therefore, in order
to optimise the similarity between simulations and data, Li
et al. (2023) performed an a posteriori reweighting of the
simulated wide-field sources by comparing their abundance
in a 2-dimensional space of shape-measurement signal-to-
noise ratio and source-resolution space to the KiDS wide-
field data. In KiDS-Legacy we follow the methods of Li et al.
(2023), and implement a similar reweighting scheme to con-
struct our simulated calibration samples (see Sect. 3.3) and
corresponding wide-field samples (see Sect. 3.3.2).

3.2 MICE2

For KiDS-Legacy we use an updated version of the KiDS-
like MICE2 mocks that resembles dr5 and implements an
improved analytic photometry model (Linke et al. 2025).
We derive all the necessary calibration data sets from the
underlying base simulation. Previous KiDS analyses have
put considerable effort into analytically mimicking their ob-
served properties as closely as possible (van den Busch et al.
2020), by reconstructing the samples’ selection functions
(typically in colour, redshift, and/or derived properties like
stellar mass) in the simulation space. The documented spec-
troscopic success rate (as a function of redshift/magnitude)
is similarly included where available. van den Busch et al.
(2020) provide extensive demonstrations of the performance
of this sample construction using the MICE2 simulation,
which were used for the calibration of KiDS-1000. Generally
speaking, the spec-z samples were difficult to be faithfully
reproduced in the simulation space without ad-hoc modifi-
cations to the original selection window, and as such were
defined with a modified selection window that reproduced
the expected colour, redshift, and number density distribu-
tions seen in the data.

Similar to van den Busch et al. (2020), we construct
the wide-field calibration data sets such that they match
observed spectroscopic data in sky coverage and relative
overlap (e.g. between BOSS and GAMA), but additionally
we decided to apply a stellar mask that we construct from
the real KiDS-Legacy masks by tiling the MICE2 footprint.
Since we use DESI and VIPERS data for the first time in
a KiDS clustering redshift analysis, we implemented their
respective selection functions for MICE2 similar to the ex-
isting ones for the GAMA, BOSS and 2dFLenS samples of
van den Busch et al. (2020). For details refer to Appendix A.

3.3 Simulating the KiDZ compilation

The KiDZ spectroscopic compilation is quite different from
the wide area samples described above, since it covers only
∼ 20 deg2 on sky and extends to significantly higher red-
shifts and fainter magnitudes. In previous work (Wright
et al. 2020a; Hildebrandt et al. 2021) we therefore elected
to apply the existing deep field selection functions in MICE2
to many distinct lines-of-sight (appropriately sized for the
spatial extent of the data calibration samples), to generate
many realisations of the spec-z calibration samples in the
simulation volume. This process produced N realisations of
the spectroscopic compilation which contain different reali-
sations of underlying sample variance and underlying pho-
tometric noise. Provided enough spatial realisations, the
simulations were then assumed to span the range of pos-
sible calibration samples that could have been observed in
the real Universe. Therefore, by calibrating our simulated
wide-field sample with these realisations of the full calibra-
tion sample, we were able to estimate an average bias (and
uncertainty) that captures the range of biases that would be
seen under repeated observations of our calibration sample
in different parts of the sky.

However, this is not directly the question of relevance
for our cosmic shear analysis. Rather, we have observed
some redshift/colour distribution of the calibrating sample,
and we wish to identify the bias that is introduced to our
analysis due to that specific redshift/colour distribution. In
previous KiDS work using MICE2 (whose light cone cov-
ers a full octant of simulated sky), Wright et al. (2020a);
Hildebrandt et al. (2021) used N = 100 lines-of-sight to esti-
mate the uncertainty on the redshift calibration procedure.
Should our observed calibration sample be an outlier in the
distribution of all possible sample variance and photomet-
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ric noise realisations, then there is only a small chance that
such a realisation exists in a sample of 100 lines-of-sight.
This is not formally a problem, but does decrease the in-
terpretability of our cosmological posteriors somewhat.

As such, in KiDS-Legacy we have shifted the philosophy
of our simulated analyses to focus on the issue of discern-
ing the bias from the calibration sample that we actually
have, rather than marginalising over the uncertainty from
all possible calibration samples. This requires a change in
implementation of the construction of the calibration sam-
ples in the simulations. The new method of constructing
realistic mock calibration samples (see Sect. 3.3.1 below) is
applied to both SKiLLS and MICE.

3.3.1 Sample matching

As motivated in Sect. 3.3, the procedure for generating red-
shift calibration samples in simulations for KiDS-Legacy
has been updated to produce more accurate estimates of
the redshift calibration bias present in the actual distribu-
tions of calibrating spectra available to us. This involves
directly replicating the distribution of available calibrating
spectra in multi-dimensional colour, magnitude, redshift,
and photo-z space.

We perform the multi-dimensional matching using the
galselect3 python module. The module takes two cata-
logues: a ‘candidate’ catalogue of potential sources, and a
‘target’ catalogue that we want to reproduce. The module
also takes a list of input features (such as colours and/or
magnitudes), and a true-redshift designation for both cat-
alogues. In practice, we perform the matching in KiDS-
Legacy using our ten-band magnitudes as the input fea-
tures. With this information, the algorithm performs a
brute-force search around each entry of the target cata-
logue to choose the best-matching candidate catalogue ob-
ject. This brute-force search first involves truncating the
candidate catalogue in a thin slice of true redshift around
the target source redshift. This in effect forces the result-
ing matched catalogue to have the exact N(z) of the target
catalogue, agnostic to the quality of the matched features.
The feature match is then performed by computing the Eu-
clidean distance (in the N-dimensional feature space) be-
tween all candidate objects and the target source. The best
matching object is then chosen to be the candidate with
the lowest Euclidean distance or (optionally) the candidate
with the lowest Euclidean distance that has not previously
been matched to a target source (i.e. allowing or not allow-
ing candidate objects to be duplicated, respectively).

The algorithm therefore contains two primary options
that are arbitrarily chosen by the user. Firstly the size of
the window in true-redshift surrounding each target source
that is used to define the possible candidate objects; and
secondly features that are used to define the matching. In
Sect. 6.1.3 we outline the influence of these options on the
constructed calibration samples.

It should be noted that this algorithm, while yielding
close-to perfectly matched redshift, colour, and magnitude
distributions, does not necessarily also yield a sample with
realistic clustering properties. Indeed, we believe that some
of the samples constructed this way might have patholog-
ical clustering properties. As such, we decided to not use
the matching algorithm for creating the wide-field samples

3 https://github.com/jlvdb/galselect.git

used in the clustering redshift analysis on MICE2 and re-
vert to the more traditional method of directly replicating
the spectroscopic target selections there (see Sect. 3.2).

3.3.2 Matching to wide-field sources

One problem with the implementation of our matching ap-
proach for construction of the calibration samples in our
simulations is that, if there are any systematic differences
in the colour-redshift space between the simulations and
the data, then the matching algorithm will introduce a sys-
tematic discrepancy between the colour-redshift relation in
the calibration- and wide-fields.

To mitigate this possible effect, we implement a simi-
lar matching algorithm between the data and simulation
wide-field samples. However, this implementation cannot,
of course, use true redshift as a basis (as in Sect. 3.3.1).
Instead, we aim to reproduce the wide-field sample in the
simulations by matching sources, again by colour and mag-
nitude, in discrete bins of photo-z, ensuring a perfect match
of the photo-z distributions.

The algorithm proceeds simply by selecting all sources
from both the wide-field samples on the data and simu-
lations that reside at a particular (discrete) value of pho-
to-z. These samples are then matched to one-another using
a k-nearest-neighbour method, and all simulation sources
are tagged with the number of data-side sources that were
most closely matched to them. This allows us to construct
frequency/representation weights for all sources in the sim-
ulated wide-field sample. The resulting frequency-weighted
wide-field sample is then used for calculation of redshift
distributions and bias parameters.

4 Direct calibration with SOMs

For all cosmological analyses with KiDS since Hildebrandt
et al. (2017), the fiducial estimation of redshift distributions
and their calibration has been performed via some imple-
mentation of direct calibration (Lima et al. 2008). Wright
et al. (2020a) presented an implementation of direct calibra-
tion using SOMs that has been utilised in all cosmological
analyses with KiDS since 2020. In KiDS-Legacy, we also
implement a version of direct calibration with SOMs as our
fiducial redshift estimation method, however with a number
of modifications not present in previous work.

The calculation of redshift distributions for KiDS-
Legacy is performed within the CosmoPipe4 pipeline, de-
scribed primarily in Wright et al. (submitted) and used in
an earlier form by Wright et al. (2020b) and van den Busch
et al. (2022).

Within CosmoPipe, redshift distribution estimation is
achieved using a sequence of processing functions. Crucial
differences in the redshift distribution estimation proce-
dure, compared to that implemented in previous analyses
of KiDS, are: the use of one SOM per tomographic bin
(Sect. 4.1), the use of gold-weight rather than gold-class
(Sect. 4.2), and additional weighting on the calibration sam-
ple to account for prior-volume effects (Sect. 4.3).

4 https://github.com/AngusWright/CosmoPipe
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4.1 Tomographic SOM construction

In their SOM implementation of direct calibration for KiDS,
Wright et al. (2020a) trained a 101×101 cell SOM on the full
KiDS+VIKING-450 (Wright et al. 2019) calibration sample
of 25 373 sources, corresponding to roughly two calibrating
sources per-cell on average. This SOM was then utilised to
compute individual tomographic bin redshift distributions
by subsetting the calibration sample (using the photomet-
ric redshift limits that define the tomographic bins) prior to
the computation of direct calibration weights (DIR; see the
beginning of their section 4). Motivations for this choice are
documented in Wright et al. (2020a), and focus (in particu-
lar) on systematic biases that occur when constructing N(z)
using the full calibration sample rather than tomographi-
cally binned calibration samples. This process, however, re-
sulted in a significant decrease in the number of sources that
were calibrated by spectra in the wide-field sample (as much
as a 30 % reduction in the available number of sources in
some tomographic bins). To circumvent this issue, the SOM
cells were then merged using full-linkage hierarchical clus-
tering to maximise coverage of the wide-field sample while
maintaining a robust estimate of the redshift distribution.
These merged groups of cells were then used in the compu-
tation of the DIR weights.

One caveat of the above procedure is that the number of
cells assigned to regions of the colour-magnitude space dom-
inated by the individual tomographic bins is non-uniform:
tomographic bins with relatively fewer calibrating spectra
receive fewer cells and less coverage in the combined SOM.
This was not a problem for previous work in KiDS, however
here we introduce a new, higher redshift tomographic bin.
This tomographic bin is both noisier (in terms of photomet-
ric properties) and has relatively fewer calibrating spectra
than its lower redshift counterparts despite the increased
number of spectroscopic calibration sources: 126 085, more
than the previous KiDS calibration sample by a factor of
roughly five.

Therefore, in order to make optimal use of this larger
calibration sample and accurately calibrate the higher-
redshift tomographic bin, we opt to training SOMs per to-
mographic bin. This ensures that each tomographic bin con-
tains the same number of cells in the training, and avoids
the limitations that can be imposed by utilising a single
SOM for calibration of the entire shear sample. The set-
tings for the SOM training are summarised in Table 4. In
particular, we note that the change to tomographic SOMs is
accompanied by a reduction in the SOM size, from 101×101
to 51 × 51, to ensure similar cell population statistics when
between tomographic and non-tomographic SOMs.

As a quantitative demonstration, we compute the
tomographic-bin coverage statistics for a single 101 × 101
SOM trained in the same manner as for previous KiDS anal-
yses. In such a SOM, the partitioning between individual
tomographic bins is relatively good, with all tomographic
bins covering 11 − 21 % of cells (a perfect equipartition
would correspond to approximately 15 % after accounting
for sources beyond the tomographic limits included in the
training). Nonetheless, there is a factor of ∼ 2 difference in
coverage between some bins, with bins four and five domi-
nating (19.5% and 21.2% of cells, respectively). This is ex-
pected, as the unweighted N(z) of the calibration sample
peaks in the region 0.6 < z < 1.1, where the bulk of bins four
and five reside. In order to avoid this over-representation of

Table 4. Fiducial parameters for SOM construction in KiDS-
Legacy.

Parameter Value

Training sample Tomographic calib. sample
SOM realisations 10

Training expression All colours & r-band total
Dimension 51 × 51
Topology toroidal
Cell type hexagonal

Data magnitude limits r ∈ [20, 24.5]
Calibration weighting Shape & prior volume
Training iterations 100

Notes. ‘All colours’ means all non-redundant combinations of
magnitudes that are able to be constructed from the 10-band
photometry, including the magnitude difference computed be-
tween the two i-band passes. As this difference does not encode
SED shape information, though, we also test the results exclud-
ing the i-band difference, finding the results to be unchanged
with respect to the fiducial case.

the SOM manifold by bins four and five and give equal
weight to all bins, we move to individual SOMs for each
bin.

4.2 Gold-class vs gold-weight

In the SOM redshift calibration implemented by Wright
et al. (2020b), the authors introduced the ‘gold’ selec-
tion to the cosmic shear analyses. This selection flagged
and removed sources which resided in parts of the colour-
magnitude space that did not contain calibrating spectra.
This gold-class selection improved the robustness of recov-
ered cosmological constraints, by removing sensitivity of
the recovered cosmology to systematic mis-representation
of calibrating spectra, resulting in potential redshift biases,
and which are a natural outcome of the wildly different
selection functions between samples of galaxies from spec-
troscopic and wide-field imaging surveys.

In the establishment of the gold-class, Wright et al.
(2019) demonstrated that repeated construction of the gold-
class led to changes in the effective number density of
sources (per tomographic bin) at the level of ≤ 3 %, in-
dicating that the gold selection was robust under repeated
analysis. However, repeated end-to-end analyses of KiDS-
1000 (within the new CosmoPipe pipeline) showed more
random noise in the recovered cosmological constraints than
would naively be expected from a 3 % change in the sam-
ple (with all other analysis aspects being equivalent to
their KiDS-1000 counterparts). Investigation of this effect
demonstrated an unrecognised feature of the gold-selection.
While the effective number density of sources per bin is sta-
ble under repeat analysis, the assignment of a gold flag to
the sources themselves varies to a much higher degree. For
example, repeated computation of the gold-class will con-
sistently classify 15 % of sources as non-gold in a given
tomographic bin, but precisely which 15 % of sources are
removed may vary from realisation to realisation. This has
the effect of increasing the independence of the samples
that are used in the end-to-end reruns of the cosmic shear
data vector, and therefore increases the noise in estimated
cosmological parameters between reruns. Testing on KiDS-
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1000, for example, demonstrated that the variation between
shape-noise realisations implicit to the changing gold-class
could lead to variations in marginal constraints of S 8 at the
level of ≲ 0.5σ; much larger than one would expect from an
apparent ∼ 3% change in the sample.

The cause of this effect is primarily photometric noise
and the random nature of the SOM training, which combine
to produce highly stochastic assignment of spectra to cells
under any one training. While such run-to-run variation is
not necessarily a problem a priori (the issue described above
is rather with our assumption that the samples are consis-
tent between trainings), we nonetheless sought an analysis
alternative that reduced the sensitivity of our cosmic shear
measurements to the training of an individual SOM. The
simplest alternative is to perform the SOM training many
times, and utilise the distribution of gold-class assignments
as a weight in the final cosmological analysis: the ‘gold-
weight’.

We compute the gold-weight by training Nrepl SOMs (ei-
ther using the full sample or individual tomographic bin
samples; see Sect. 4.1), and calculate the gold-class of all
sources per bin for each of these SOMs. The gold-weight is
then defined as:

Wgold
i =

∑
j∈Nrepl

gi, j

Nrepl
, (1)

where the gi, j are the 0/1 gold classifications assigned to
each source i under realisation j of the SOM training. Using
the gold-weight, we are able to construct N(z) that are less
sensitive to the randomness of any single gold-class assign-
ment, and to construct data-vectors that are more consis-
tent under end-to-end reruns of the analysis pipeline. This
has the primary benefit of creating less statistical noise in
repeated analyses of KiDS, leading to a more robust legacy
data product. An additional benefit of gold-weighting is
that it eliminates the requirement for the hierarchical clus-
tering of SOM cells, which was performed by Wright et al.
(2019) to increase the fraction of positive gold-class assign-
ments for wide-field sources. Figure 3 demonstrates the ben-
efit of gold-weight over gold-class visually. The gold-class
definition is highly stochastic, as cells that are classed as
gold in a single realisation are assigned a wide range of
gold-weights after many realisations.

The distribution of gold-weights computed for our fidu-
cial simulations in KiDS-Legacy are shown in Figure 4. It
is apparent from the figure that the gold-weight per source
varies strongly per tomographic bin, however the behaviour
is qualitatively similar in the most relevant aspects: all bins
have a peak in the gold-weight PDF at unity (implying
that sources are typically consistently classed as gold under
realisations of the SOM), and very few sources have a gold-
weight of zero (suggesting that it is rare for sources to be
consistently unrepresented in the calibration compilation
under realisations of the SOM). This result is consistent
with the conclusion that the variability in gold assignment
is driven by photometric noise.

4.3 Prior redshift weight

The SOM implementation of the direct calibration method
is designed to perform two primary tasks: reweight the
colour space of the calibration sample to better represent
the wide-field sample, and flagging wide-field sources for

removal where this correction is not possible (i.e. the gold-
weighting).

These corrections assume, however, that the probability
distribution of redshift at a given colour in the calibration
and wide-field samples are identical. Such an assumption is
easily violated in the process of spectroscopic redshift ac-
quisition, where two galaxies with different redshift but the
same broadband colours (i.e. those with colour-redshift de-
generacy) have different spectroscopic redshift success rates
(as, e.g., one galaxy shows the [OII] doublet in the optical
and the other does not). Such a selection in the success-
ful acquisition of spectroscopic redshifts has been shown
to lead to pathological biases in vanilla direct calibration
implementations (Hartley et al. 2020).

Even more simply, however, this assumption is also eas-
ily violated when the samples are constructed from vastly
different selection functions (e.g. Gruen & Brimioulle 2017).
For example, two simple magnitude-limited samples con-
structed from different magnitude limits will probe differ-
ent redshift baselines. If the deeper sample has access to
galaxies which are colour-degenerate with galaxies in the
shallower window, then the redshift distribution at fixed
colour will be unimodal for the shallow sample and multi-
modal for the deeper sample.

Correcting for this effect is complicated, as it requires
one to know the distribution of redshift for the target sam-
ple of galaxies (which is our desired end-product of the SOM
calibration process). In KiDS-Legacy, we perform a first or-
der correction using an a priori estimate of the wide-field
sample redshift distributions (see below), and remove sig-
nificant differences between this wide-field estimate and the
(known) redshift distribution of the calibration sample.

To perform this correction, we require an estimate of
the true redshift distribution of the cosmic shear wide-field
galaxy sample. To this end we start by constructing an ana-
lytic expression for the redshift distribution of an arbitrary
magnitude limited sample. Using the raw 108 deg2 SURFS-
Shark lightcone (see Sect. 3), which contains noiseless SDSS
and VIKING fluxes, we construct samples of galaxies cut to
various magnitude limits in a range of photometric bands.
We then fit each of the resulting galaxy samples with the
function:

N(z,m) = A(m) z2 exp
(
−(z/0.1)α(m)

)
, (2)

where A and α are free parameters. We then model A(m)
and α(m) with a fourth-order polynomial.

This allows us to construct an analytic redshift distribu-
tion for a sample of galaxies that is magnitude limited (in
true flux) between 18th and 27th magnitude in any band
from u to Z. An example showing the estimated model pa-
rameters, the polynomial fits, and the resulting analytic
N(z) is given in Fig. 5.

We subsequently construct prior volume corrective
weights for the KiDS-Legacy calibration sample by first pro-
ducing an analytic approximation to the wide-field sample
redshift distribution using our analytic prescription, using
a magnitude limited sample that we believe most closely
mimics the true selection function of the wide-field data.
This is complicated by the various complex lensing selec-
tions (and shape weights) that are applied to the wide field
lensing sample of galaxies.

We choose to use a sample that is magnitude limited
in the r-band, at 20 ≤ r ≤ 23.5. The bright-end magnitude
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Fig. 3. Comparison between gold-class and gold-weight definitions. Here a SOM trained on tomographic bin one in our SKiLLS
simulation is coloured by the true mean redshift of each cell (left), the gold-class definition of each cell under a single realisation
(centre), and the gold-weight of each cell after ten realisations. In the gold-weight panel, the cells which are assigned a (highly
stochastic) zero gold-class in our single realisation are highlighted with an orange border. These cells are assigned a wide-range
of final gold-weights, highlighting the stochasticity of the gold-class definition and the superiority of the gold-weights. In each
colour-bar, the PDF of cell values is shown.

Fig. 4. Distributions of gold-weight per tomographic bin for our
fiducial SKiLLS simulations. Individual lines show the scatter in
the gold-weight PDFs under different realisations of our spectro-
scopic calibration samples. The tomographic bins show qualita-
tively similar behaviour: many sources are consistently classed
as gold under all realisations of the SOM (wgold = 1), and very
few sources are consistently classed as not-gold under all reali-
sations (wgold = 0).

limit is chosen because of the selection performed by lensfit
to limit galaxies to those with r ≥ 20. The faint-end limit is
chosen due to the lensing weights returned by lensfit which
are strongly magnitude dependent: at r ≈ 23.5 the lensing
weight is roughly half its maximum. We define the correc-
tive prior volume weights as the ratio of the redshift distri-
bution PDFs Pw(z)/Pc(z), where w and c refer to the analytic
wide-field sample and the data calibration sample respec-
tively. The impact of the prior volume weights on the total
N(z) of the spectroscopic compilation, and also for an exam-
ple tomographic bin, are shown in Fig. 6. The figures show
the distributions before SOM weighting. It is clear from the
figure that the prior volume weights have a systematic effect
on the relative weight of individual calibrating sources as
a function of redshift and, perhaps more importantly, that

this manifests as a shift in the entire pre-weighting N(z) for
some tomographic bins.

4.4 Redshift distribution bias estimation

Calibration of the redshift estimation process (specifically
the derivation of tomographic bin redshift bias parameters)
in KiDS-Legacy is performed by implementing the redshift
distribution estimation pipeline on our various simulated
data sets, which are designed to mimic the observed data
as accurately as possible. With the estimated redshift dis-
tributions, and the known true (weighted) redshift distri-
bution of the source samples, we then compute the bias of
each estimated redshift distribution as:

δz = µ̂z − µz , (3)

where µz is the (shape- and gold-) weighted mean true red-
shift of the wide-field sample, µ̂z is the estimated mean
redshift of the wide-field sample, computed directly from
our weighted calibration sample5. We typically perform
this measurement using many realisations of the calibra-
tion samples, which produces many estimates of µ̂z (and,
because of the gold selection/weighting, possibly many dif-
ferent µz). Our final quoted biases are the arithmetic means
of the biases estimated per tomographic bin and/or pipeline
setup (⟨δz⟩). The population scatter of the biases in these
realisations is also a relevant consideration, and is quoted
as σδz. We note in particular that these uncertainties are
smaller than those in previous KiDS analyses, due to the
change in simulation philosophy described in Sect. 3.3.

5 Clustering redshift methodology

As a complementary approach to test and validate the SOM
N(z) we use clustering redshifts (e.g. Newman 2008) fol-
lowing previous KiDS work (Hildebrandt et al. 2017, 2020,
2021; Morrison et al. 2017; van den Busch et al. 2020).
The dr5 analysis presented here is an evolution of these
previous works adding more area for the measurements of

5 For our fiducial N(z) binning, ∆z = 0.05, the primary probabil-
ity mass of each N(z) is sampled by ten or more bins. This means
that the difference introduced when computing the sample mean
redshift vs N(z) expectation is negligible.
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Fig. 5. Model parameters and the resulting analytic N(z) for samples defined as magnitude limited (in the r-band) from our noiseless
SURFS+Shark lightcone. Panels left and centre show the free parameters from Eq. (2), as a function of the r-band magnitude
limit, including polynomial fits. The right panel shows the analytically estimated N(z) for each of the models parameters in the
other two panels.

Fig. 6. Impact of prior-volume weights on the (pre-SOM) N(z)
of the full spectroscopic compilation (upper panel) and on those
galaxies in the compilation that end up in tomographic bin three
(lower panel). The systematic effect that the prior weight im-
parts on the tomographic bin is particularly clear, where the
shift in probability mass from z ≈ 0.9 to z ≈ 0.5 creates a sys-
tematic shift in the full tomographic bin three N(z).

the cross-correlations and – more importantly – expand-
ing the suite of external spectroscopic surveys used for the
calibration. The dedicated KiDZ data allow us to measure
cross-correlations with VIPERS, providing additional con-
straints in the range 0.6 < z ≲ 1.2. Recently, the DESI Early
Data Release provided a lot of additional galaxies with spec-
troscopic redshifts extending to even higher redshifts and
overlapping with the KiDS main survey area in six rosette-
shaped DESI pointings. Together these advances allow us
to validate the SOM N(z) for the first five tomographic bins

(bin six is only partly covered) without referring to deep,
pencil-beam surveys (as we still had to do in Hildebrandt
et al. 2021), significantly decoupling the clustering redshift
from the SOM approach in terms of calibration data. While
VIPERS is also used for the SOM calibration, its contribu-
tion to both calibrations is small (see Sect. 5.2).

5.1 Correlation measurements

KiDS clustering redshifts are estimated with the versa-
tile, public code yet_another_wizz6 (YAW; van den Busch
et al. 2020), which is based on concepts already introduced
by Schmidt et al. (2013) and Morrison et al. (2017). In
particular, we use the publicly available version 2.6.0 that
differs from the versions used in previous publications (e.g.
Hildebrandt et al. 2021; Naidoo et al. 2023) in a few ways.

The code now generates spatial regions per calibration
sample based on k-means clustering of sky coordinates (e.g.
using random catalogues) instead of splitting the data into
individual pointings. These regions are used to estimate
the data covariance via a spatial jackknife (previously us-
ing bootstrap). This empirical data covariance was tested
against analytical models for the covariance matrix based
on halo occupation distributions and a halo model approach
for a different calibration data set derived from MICE2.
While there is good general agreement between the features
of the empirical and the analytical covariance, we opt to rely
on the jackknife method due to the highly non-linear regime
of the clustering measurements and possible uncertainties
in the halo occupation distribution as well as non-Limber
effects in the connected non-Gaussian terms (for details we
refer to section 9.2 of Reischke et al. 2024). Regardless, the
agreement with the analytic covariance serves as a good
cross-check for the empirical jackknife covariance that we
use throughout the clustering redshift analysis.

In addition to that, the code is now measuring pair
counts across the boundaries of these spatial regions7 and

6 https://pypi.org/project/yet-another-wizz/
7 While counting pairs only within the same region can have
an effect on the overall correlation amplitude, it has no effect
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the Landy-Szalay estimator (Landy & Szalay 1993) is used
for all auto-correlation measurements. Finally, in the case of
the cross-correlations, which use the Davis & Peebles (1983)
estimator, only one random catalogue is needed. Hence, one
can decide whether to use a random catalogue for the spec-
troscopic or KiDS data. We decide to use random catalogues
for the spectroscopic data instead of the KiDS data in those
cases, since most of the spectroscopic surveys provide well-
established random catalogues that take into account and
correct for a lot of systematic effects.

5.2 Fiducial analysis setup

We measure angular correlations in a single bin of fixed
transverse physical separation between 0.5 < r ≤ 1.5 Mpc in
32 linearly spaced redshift bins in the range 0.05 ≤ z < 1.6.8
For MICE2, the upper redshift limit is reduced to zmax = 1.4.
Furthermore, we need to mitigate the redshift evolution of
the galaxy bias of the calibration data and the KiDS-Legacy
data set. Following the notation of van den Busch et al.
(2020), these biases can – under certain assumptions – be
expressed in terms of the amplitudes of the angular auto-
correlation functions of our spectroscopic reference sample,
wss(z), and our wide-field photometric sample, wpp(z). Then,
the true (unknown) redshift distribution can be written as

np(z) =
wsp(z)√

∆z2 wss(z)wpp(z)
=

NCC(z)√
wpp(z)

, (4)

where wsp(z) is the cross-correlation amplitude between our
spectroscopic and photometric samples, ∆z is the bin width
of the CC measurements, and NCC(z) denotes our estimated
N(z) from the cross-correlation method. In our fiducial anal-
ysis we choose to only correct for the calibration data bias,
i.e. we effectively measure the numerator of the right-hand
side of Eq. (4). The impact of the unknown galaxy bias of
the KiDS-Legacy data is partly mitigated by the fact that
we bin the data tomographically (Schmidt et al. 2013) and
it has been shown previously to be sufficiently small that we
can neglect it in our following analysis (see e.g. Hildebrandt
et al. 2021; van den Busch et al. 2020).

Finally, we must produce a joint redshift estimate from
all five calibration samples for which we measure the cor-
relation functions independently. We obtain this final esti-
mate by computing the inverse-variance weighted average
of the bias-corrected correlation measurements of all refer-
ence samples. This produces an optimal redshift estimate
that reflects the redshift-dependent relative contribution of
each correlation measurement to the overall redshift esti-
mate and accounts for the different statistical power each
calibration sample has at any given redshift (Fig. 7). In gen-
eral, the joint CCs are dominated by BOSS, GAMA, and
2dFLenS at z ≲ 0.7 and by DESI at high redshifts, whereas
VIPERS has an overall small contribution due to its limited
total area and number density.

5.3 Adaptation of signal-to-noise in MICE2

When comparing the signal-to-noise ratio in the measured
CCs on the KiDS/KiDZ data and MICE2, we find that the

on any of our previously published results because this overall
amplitude is later normalised.
8 These scales are larger than what was used in previous KiDS
clustering redshift analyses. See Sect. 6.2.2 for a justification.
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Fig. 7. Example of the inverse-variance weighted combination
of CCs computed from the fourth tomographic bin of MICE2.
The top panel shows the individual measurements from each
calibration sample, the middle panel the weighted average, and
the bottom panel the relative weight of each sample as a function
of redshift.

noise level in the simulation is typically much smaller in
most redshift bins, especially in the sixth tomographic bin
(see top panel of Fig. 8). The reason for this difference is
not entirely clear. Possible reasons could be differences in
the selection functions applied to MICE2 for both, the cal-
ibration and KiDS-Legacy data, as compared to the real
data. There may also be a difference in the overall clus-
tering amplitude found in the data and the simulations,
especially on small scales. Additionally, the key difference
between the data and MICE2 is that the mock photometry
is perfectly uniform such that the effects of variable depth
(Heydenreich et al. 2020), are not present in the simulation.
Finally, there may be other systematic effects in the data
for which our MICE2 data does not account, e.g. related to
fibre-collisions, which for example in DESI require special
pair-weights (Bianchi et al. 2018) that we currently cannot
integrate into our correlation estimator.

Since there is no clear explanation for this difference be-
tween data and simulation, we opt to adapt the measure-
ments on the mocks by adding additional Gaussian noise
to the values and inflating the error bars such that they
match the data. We compute the right amount of noise re-
quired from the difference between the covariances of the
inverse-variance-combined measurements of data and mock.
Figure 8 shows a comparison of the original measurements
in MICE2 and how the adapted version compares to the
data measurements in the sixth tomographic bin.
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Fig. 8. One realisation of the CC measurements from MICE2
in the sixth tomographic bin after noise adaptation (Sect. 5.3)
and adding intrinsic scatter (Sect 5.4). The top panel compares
just the uncertainties of NCC(z) from the data (grey) and MICE2
before (blue) and after adaptation (red). The black dashed line
indicates the fitted intrinsic scatter from the measurements on
the data ( f = 0.14±0.04; see Eq. 6). The bottom panel shows the
measured NCC(z) fromMICE2 (blue points) compared to the data
(grey line). The red data points represent the MICE2 measure-
ments after adapting the noise (upscaling errors and perturbing
values) and adding the intrinsic scatter (only perturbing values)
obtained from the data.

5.4 Modelling of the measurements

A long-standing issue of clustering redshifts is that the
measured correlation functions are, by definition, no prob-
ability densities and must therefore be modelled in some
way. A number of different approaches (e.g. Johnson et al.
2017; Stölzner et al. 2021; Gatti et al. 2022; Naidoo et al.
2023) have been implemented to mitigate the frequently
arising negative correlation amplitudes, as they represent
only a noisy realisation of the underlying redshift distribu-
tion. Given the dominant sensitivity of cosmic shear to the
mean redshifts of the tomographic bins, we opt for simplic-
ity here and use the SOM N(z) to fit a simple shift Dz in
redshift and a free normalisation9 A such that

nmodel(z) = A n(z − Dz) . (5)

This approach, however, can be quite sensitive to single
data points with small variance, which can be aggravated
in case of mismatches between the shape of the CCs and
the model N(z). This is of particular importance since there
seems to be some additional intrinsic scatter in the data
CCs that exceeds the variance that one expects given the
uncertainties of the measurements. This intrinsic scatter is
most obvious in bins five and six and in particular at high
redshifts.

9 The normalisation is necessary because we cannot expect the
data points to be properly normalised a priori due to galaxy bias
or other systematic effects.

Observational systematics might introduce such erro-
neous additional correlations and could be reduced in fu-
ture work by using organised random catalogues (Yan et al.
2025). Here, we opt for a simpler empirical correction and
extend our fit model with an additive error term f (1 + z)
with free amplitude f such that the combined uncertainty
s for each measurement is

s =
√
∆n2

CC + f 2 (1 + z)2 . (6)

We integrate this error term into our likelihood and
marginalise over f when determining the shift parameters
Dz and the amplitudes A.

This process of measuring and modelling clustering red-
shifts with a reference N(z) is tested on the MICE2 mocks,
where we can additionally use the true redshift distribution
as fit model in Eq. (5). This allows us to verify the robust-
ness of and determine any biases inherent to our method-
ology. A key difference with respect to the data is however
that the additional intrinsic scatter, parameterised by the
f -term, is not present in MICE2. We therefore determine
f on the data by fitting each tomographic bin and add the
expected intrinsic scatter to the mock measurements. We
perturb the data points (but not their uncertainties, which
were already adapted via the method described in Sect. 5.3)
with Gaussian noise with a variance of f 2 (1 + z)2, which is
also included in the example shown in Fig. 8. Since we must
avoid biases that may arise from a certain random realisa-
tion of the added scatter, we always create 100 realisations,
fit each of them independently and compute the mean and
variance of Dz from all realisations.

6 Simulation Results

In this section, we present the results of the redshift dis-
tribution estimation from our simulated galaxy samples. In
Sect. 6.1 we detail the redshift distributions and bias pa-
rameters estimated using our SOM algorithm. In Sect. 6.2
the redshift distributions and bias parameters estimated us-
ing the CC method are shown. Within these sections, we
cover the sensitivity tests that are performed to determine
the robustness of the methods.

6.1 SOM redshift distributions

Table 5 summarises the results of our SOM redshift distri-
bution calibration using our various simulations. The ta-
ble presents multiple statistics, which we outline here. ⟨µ̂z⟩

is the average of the estimated redshift distribution first
moments (i.e. means) under realisations of the calibration
sample (see Sect. 3). ⟨δz,0⟩ is the average bias in the first mo-
ments prior to any reweighting by the SOM, under realisa-
tions of the calibration sample, relative to the true weighted
redshift distribution of the lensing sample (which is nat-
urally unknowable for real data). ⟨δz⟩ is the average bias
in the first moments after reweighting by the SOM. σδz is
the standard deviation of the distribution of biases after
reweighting by the SOM. Finally, ∆⟨δz⟩ = ⟨δz⟩ − ⟨δz⟩ref is
the difference of the average biases, after reweighting by
the SOM, between a given scenario and a reference/fiducial
scenario.
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Table 5. Summary of redshift distribution estimates from simulations.

Simulation Run Desc. Statistic Tomographic Bin Described
ID 1 2 3 4 5 6 in:

SKiLLS

[A] :
Fiducial
(Pvol &

Swgt)

⟨µ̂z⟩ 0.315 0.472 0.604 0.798 0.998 1.312

6.1.1
⟨δz,0⟩ 0.026 0.038 0.006 -0.005 -0.095 -0.196
⟨δz⟩ -0.026 0.014 -0.002 0.008 -0.011 -0.054
σδz 0.002 0.001 0.002 0.002 0.002 0.004

[B] :
Single Shear
Realisation

⟨µ̂z⟩ 0.316 0.472 0.605 0.798 0.999 1.313
6.1.2⟨δz⟩ -0.025 0.013 -0.001 0.008 -0.012 -0.053

σδz 0.002 0.001 0.002 0.001 0.004 0.004
∆⟨δz⟩ 0.001 -0.000 0.001 -0.001 0.000 0.002

[C] : Algor. var. σδz 0.001 0.001 0.001 0.001 0.001 0.003 6.1.3

[D] : No stellar
contam.

⟨µ̂z⟩ 0.316 0.470 0.608 0.800 1.008 1.334

6.1.4
⟨δz,0⟩ 0.041 0.040 0.011 -0.003 -0.091 -0.171
⟨δz⟩ -0.023 0.008 -0.001 0.006 -0.007 -0.039
σδz 0.002 0.001 0.002 0.001 0.003 0.004
∆⟨δz⟩ 0.0024 -0.005 0.001 -0.002 0.005 0.015

[E] : No calib.
weights

⟨µ̂z⟩ 0.346 0.497 0.637 0.803 0.982 1.302

6.1.5
⟨δz,0⟩ -0.004 0.035 0.006 -0.000 -0.087 -0.163
⟨δz⟩ 0.008 0.038 0.031 0.011 -0.029 -0.065
σδz 0.003 0.000 0.002 0.000 0.002 0.005

[G] :

Swgt only
(no prior

volume
weight)

⟨µ̂z⟩ 0.345 0.494 0.636 0.807 0.997 1.298

6.1.6
⟨δz,0⟩ -0.018 0.030 -0.002 -0.006 -0.096 -0.193
⟨δz⟩ 0.002 0.035 0.029 0.016 -0.014 -0.068
σδz 0.003 0.001 0.002 0.001 0.003 0.005

[F] :

Pvol only
(No calib.

shape

weight)

⟨µ̂z⟩ 0.318 0.472 0.608 0.801 1.008 1.335

6.1.7
⟨δz,0⟩ 0.043 0.043 0.015 0.002 -0.086 -0.164
⟨δz⟩ -0.020 0.013 0.004 0.011 -0.001 -0.032
σδz 0.002 0.001 0.001 0.001 0.003 0.005

SKiLLS
trunc. [H] :

Pvol only
(no calib.

shape

weight)

⟨µ̂z⟩ 0.320 0.469 0.604 0.798 0.983 1.110

6.1.8
⟨δz,0⟩ 0.032 0.041 0.022 0.001 -0.074 -0.091
⟨δz⟩ 0.001 0.015 0.017 0.014 -0.004 -0.014
σδz 0.001 0.001 0.001 0.001 0.001 0.005

MICE2 [I] :

Pvol only
(no calib.

shape

weight)

⟨µ̂z⟩ 0.304 0.468 0.593 0.796 0.965 1.097

6.1.8
⟨δz,0⟩ 0.048 0.042 0.021 0.024 -0.039 -0.074
⟨δz⟩ 0.010 0.020 0.009 0.034 0.014 -0.011
σδz 0.002 0.002 0.002 0.001 0.002 0.007
∆⟨δz⟩ 0.009 0.004 -0.008 0.020 0.017 0.003

Notes. Entries above include abbreviations for prior volume weights (‘Pvol’), lensfit shape weights (‘Swgt’), Statistics in the table

include:

⟨µ̂z⟩: average of mean redshifts of all realisations of the calibration sample
⟨δz,0⟩: average bias of the mean redshift prior to SOM
⟨δz⟩: average bias of the mean redshift after SOM weighting
σδz: uncertainty of ⟨δz⟩, where values of ≤ 0.01 are considered negligible.
∆⟨δz⟩: difference in biases (after SOM weighting) between scenario and reference, i.e. ⟨δz⟩ − ⟨δz⟩ref

6.1.1 [A] : Fiducial calibration

We compute the N(z) and bias parameters for our fiducial
SOM redshift calibration methodology and parameter set
(Table 4), and subsequently compare alternative analyses
(such as sensitivity tests) to these fiducial results. The re-
sults of these sensitivity tests are then folded into our analy-
sis in one of two ways. For tests that are expected to have no
impact on the redshift distributions (such as perturbations
to ad-hoc parameters of the simulation construction), we
fold differences in recovered N(z) into our systematic error

budget. For tests that are expected to have some system-
atic (possibly non-negligible) impact on the redshift distri-
butions (such as alternate sample weighting), we utilise the
resulting N(z) and bias parameters for use in full end-to-end
reruns of the KiDS-Legacy cosmology, and present these re-
sults as alternative cosmological constraints in Wright et al.
(submitted). This is because the differences in biases that
arise from the latter type of analyses are not indicative of
systematic effects in the methodology: rather the samples
underlying the analysis have become systematically differ-
ent.
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Fig. 9. Redshift distributions for the fiducial SOM calibration methodology, computed using the SKiLLS simulations. The ensemble
of blue polygons show the N(z) constructed with different realisations of the calibration sample. Redshift distributions include the
new gold-weighting for the wide-field sample, and prior volume weighting and shape measurement weights for the calibration
samples.

Resulting N(z) for our fiducial SOM redshift calibration
methodology are provided in Fig. 9. The redshift distribu-
tions are well constrained to the tomographic bin limits
for all six tomographic bins used in KiDS-Legacy, with the
third tomographic bin showing the largest “outlier popula-
tion” (an extended tail to low redshifts) and the sixth to-
mographic bin showing a bias to somewhat lower redshifts
than targeted by the photo-z cuts. The figure shows the
full range of redshift distributions estimated with realisa-
tions of the calibration sample as a filled polygon. Overlaid
is the true target N(z), which is also shown as a polygon
but which has, in effect, vanishingly small area. The fig-
ure demonstrates the consistency of the estimated and true
redshift distributions: in every bin, our estimated N(z) are
able to successfully capture the full complexity of the source
redshift distributions with accuracy and precision.

Our fiducial redshift distributions and biases are some-
what different to those presented in previous KiDS analy-
ses, such as Wright et al. (2020a). In particular, the uncer-
tainties on the bias parameters are an order of magnitude
smaller than in previous work, down from σ∆z ≈ 0.01 to
σ∆z ≈ 0.001. This reduction is attributable primarily to the
use of our matching algorithm, which forces the calibra-
tion sample redshift distribution to be identical under all
realisations (that is, equal to the observed redshift distri-
bution), regardless of the underlying large-scale structure.
These fiducial uncertainties form our base uncertainty for
the SOM calibration method, which are then increased as
needed to encompass the systematic uncertainties deter-
mined for the method in the sections below.

Finally, we note again that, compared to previous SOM
redshift calibration work within KiDS (see, e.g., Wright
et al. 2020a; Hildebrandt et al. 2021; van den Busch et al.
2022), the redshift calibration process here utilises different
tomographic binning and a much larger spectroscopic cali-
bration sample. Furthermore, we implement various weights

and selections on the calibration side not previously imple-
mented in KiDS. This makes direct comparison between
our fiducial results and results presented in previous KiDS
work difficult; it would be inappropriate, for example, to ap-
ply calibrations presented here to previous work with KiDS
(without redoing the redshift calibration entirely).

6.1.2 [B] : Single shear realisation

Our fiducial analysis uses the full SKiLLS simulation set, in-
cluding eight realisations of the simulated photometry cat-
alogues that are generated by applying four uniform shears
and two position angle rotations to all sources in the 108
deg2 of simulated sky. These realisations are useful as each
has an independent realisation of photometric noise, allow-
ing us to increase the effective size of our simulated cata-
logue by a factor of eight. This does not, however, reduce
the sample variance contribution to the analysis, as all pho-
tometric realisations are drawn from the same underlying
large-scale structures.

The motivation for the use of all shear realisations in
the fiducial pipeline is a practical one: we require the shear
realisations for shape calibration, and all sources must be
appropriately gold-weighted. However, using the multiple
photometric realisations considerably increases the runtime
of our calibration. Therefore, in the interest of speed and
reducing unnecessary power consumption, we only utilise a
single shear realisation for much of the redshift calibration
testing presented here.

As such, we first verify that the results that we find
for our fiducial redshift calibration process are unchanged
under reduction of the number of sources available for cal-
ibration testing. These results are presented in Table 5: we
find that the use of a single shear realisation produces bias
estimates that are consistent with the fiducial case to better
than |∆⟨δz⟩|= 0.0012 in all bins. Furthermore, the scatter of
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the calibrated biases is always consistent between the single
and fiducial shear runs, with the exceptions that the scatter
is increased in bin one and decreased in bin six. However,
as the absolute size of the scatter is still relatively small,
we conclude that there is unlikely to be a systematic bias
introduced in our testing process by using a single shear
realisation in redshift calibration testing.

6.1.3 [C] : Matching algorithm validation

We validate the robustness of our calibration to the ad-hoc
matching algorithm parameters (described in Sect. 3.3.1) by
constructing multiple realisations of the calibration sam-
ple using perturbations on the fiducial choices. We then
propagate these modified calibration samples through the
redshift calibration pipeline and compare the biases that
we estimate to those from the fiducial setup. For perturba-
tions in the matching parameters, we test three choices of
redshift window size (1000, 2000, and 10 000 sources respec-
tively), 10 perturbations to the matching algorithm feature
space (dropping one band at a time), matching on colours
and a reference magnitude, and matching without photo-z
information. We find that the matching algorithm is ex-
tremely robust to each of these perturbations, with typical
changes in the bias (from that measured in the fiducial case)
of order ∆⟨δz⟩ = 10−4. For use in our uncertainty budget,
we compute the standard deviation of the recovered bias
parameters under the different realisations of the match-
ing algorithm; these are reported in Table 5. In all bins
the scatter introduced in the bias from the matching algo-
rithm perturbations is less than half the scatter in the spa-
tial/photometric realisations of the calibrations samples in
the fiducial case (i.e. σ∆⟨δz⟩ < 0.5σ⟨δz⟩,fid). The maximal un-
certainty in the bias introduced by our matching algorithm
perturbations is σ∆⟨δz⟩ = 0.0029, in the sixth tomographic
bin.

6.1.4 [D] : Impact of stellar contamination

A primary development of the SKiLLS simulation over
those previously used in KiDS redshift calibration is the
full-complexity inclusion of image-based source extraction
and modelling. An outcome of this process is that the sim-
ulation no longer includes an artificially perfect stellar re-
jection. Li et al. (2023) demonstrate using their KiDS-1000
simulation that the KiDS lensing sample is contaminated by
a residual population of stars, after all selections/cleaning,
at the level of ∼ 0.56 %. These sources contaminate the
shear measurements of the survey, and are required to be
calibrated-out using these simulations (through correction
of additive and multiplicative shear measurement biases).

An additional effect not yet analysed in KiDS, however,
is the effect that these sources have on the redshift distri-
bution bias estimates. Stellar contamination influences the
redshift distribution as a population of sources at z = 0,
which (depending on the amount of contamination) can
possibly contribute non-negligibly to the location of the dis-
tribution mean. Additionally, stellar sources are not repre-
sented in the spectroscopic calibration sample, as spectro-
scopic surveys are generally able to reliably flag and remove
stars. This means that stars will act to erroneously boost
the significance of redshifts in the reconstructed N(z), where
they coincide with galaxy colours.

We investigate the significance of the contribution of
stars to the redshift distributions from SKiLLS by run-
ning our calibration pipeline assuming perfect stellar rejec-
tion, and comparing the resulting distributions/biases to
our fiducial run. These results are presented in Table 5. We
find that the difference in bias with and without the stel-
lar contamination is of similar order as the uncertainty in
the bias estimates between realisations: the maximal dif-
ference in the recovered bias is |∆⟨δz⟩|= 0.0078 in the sixth
tomographic bin, which is a roughly 2σ deviation from the
fiducial bias uncertainty (which itself is a lot smaller than
the conservative final uncertainty, see Sect. 6.1.8).

6.1.5 [E] : Calibration-side weighting

In previous KiDS analyses, redshift calibration has always
been performed without weights utilised on the calibration
side of the SOM/direct calibration process. This is primar-
ily because the spectroscopic calibration fields were (and
largely remain to be) not wide-field shear fields. However,
as discussed in Sect. 4, in KiDS-Legacy we implement addi-
tional weighting on the calibration side in an effort to mit-
igate systematic biases: shape-measurement weights, and
prior-volume weights. We test the impact of removing these
weights one at a time in Sects. 6.1.6 and 6.1.7. For closer
compatibility with previous work, however, here we also test
the redshift calibration process when not including either
of these weights. The results are presented in Table 5.

In terms of bias, we find that the inclusion of the weight-
ing (i.e. Run ID [A]) produces smaller biases in some bins
than the unweighted scenario (i.e. Run ID [E]). These shifts
are partly larger than the uncertainty estimates. Bins two,
four, and five see reductions in the absolute value of the
bias (going from [E] to [A]) at the 2 − 3σ level. However,
the opposite effect is true in some other bins: bins one and
three see a 2σ increase in absolute value of the bias when
including the calibration side weights. Of note is the mecha-
nism for bias to change on the redshift distributions without
corresponding change in the estimated redshift distribution
means. The weighting on the calibration side influences the
effective redshift distribution of the wide-field sample (i.e.
the truth) through the gold-weight, which itself is modi-
fied by the relative up- and down-weighting of calibration
sources by the shape and prior volume weights.

Furthermore, the bias in the redshift distribution means
prior to SOM weighting is considerably larger in bins two to
four without the calibration-side weighting. This indicates
that the weighting applied in the fiducial case brings the
calibration and wide-field samples closer together prior to
the re-balancing of the colour space via the SOM weights.

Overall, the weights on the calibration side can be seen
to have a non-negligible impact on the redshift distribution
biases. The individual impact of the shape-measurement
weights and prior-volume weights are discussed in the fol-
lowing sections. Given the changing nature of the wide-
field sample N(z) under the calibration-side weighting, we
therefore opt not to include these changes in bias as a sys-
tematic component in our cosmological analysis. Rather
we instead reserve both sets of redshift distributions and
weighted source samples for separate cosmological analy-
ses. While the redshift distributions are not directly com-
parable and the analysis presented here does not strongly
favour one approach, the cosmological parameters should
still be highly consistent for both scenarios. In practice we
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use the maximally realistic setup for our fiducial case: in-
cluding both prior volume weights and shape weights on
the calibration side.

6.1.6 [F] : Impact of shape-measurements

We next test the influence on the redshift distributions bi-
ases when implementing weighting on the calibration side
using only shape-measurement weights. We compare these
shape-weight-only biases to those from both the fiducial and
no-calibration-weighting results presented in Table 5.

We first note that the application of the shape-
measurement weights to the calibration sample initially has
the counter-intuitive effect of dramatically increasing the
bias in the redshift distributions before SOM weighting.
This is particularly clear in the fifth and sixth tomographic
bins; in bin six, the bias exceeds δz = 0.1 prior to SOM
weighting. This suggests that the application of the shape-
measurement weights alone acts to increase the disparity
between the calibration and wide-field data sets at high red-
shift. We see the inverse effect, however, in bins two-four,
suggesting that there the inclusion of shape weights makes
the calibration sample more representative of the wide-field
data.

After SOM weighting, however, the situation is clearer.
After SOM weighting, the redshift distribution biases are
significantly improved in all bins except for the first, where
the calibration side shape-measurement weights are not
able to correct the over-correction of the SOM weighting
(discussed in Sect. 6.1.5). Overall, the addition of calibra-
tion side shape weights produces a reduction in bias com-
pared to the unweighted result, particularly in the bins most
sensitive to cosmic shear.

6.1.7 [G] : Impact of prior-weights

The inclusion of prior volume weights on the calibration
side acts to change the relative importance of calibration
sources that reside in cells containing colour-redshift de-
generacies. The results when computing redshift distribu-
tions using only calibration-side prior volume weights are
shown in Table 5. Firstly, it is clear that the inclusion of
the prior volume weights brings the redshift distributions
before SOM weighting much closer to those of the wide-field
calibration sample: biases in bins two to six all reduce by
|∆⟨δz,0⟩|∈ [0.01, 0.03]. This indicates that the prior volume
weights are having a positive effect in removing the system-
atic differences between the calibration and wide-field data
along the redshift-axis.

After SOM weighting, we again find biases that are im-
proved in some bins and degraded in others: in the higher
redshift tomographic bins we see consistent further reduc-
tion in biases after the SOM weighting, however we again
see over-correction in the lower redshift bins. Relative to
the results when using shape-only weighting we see that
the prior-volume-only weighting produces slightly poorer
bias recovery, but that the bias is reduced relative to the
implementation without any calibration-side weighting in
the majority of bins.

6.1.8 [H-I] : SKiLLS vs MICE2

We verify the computation of biases using two different sim-
ulated data sets, as a means of estimating the robustness of
our calibration procedure to the assumptions inherent to a
single simulation. To do this, we apply our N(z) estimation
algorithm to samples constructed in the SKiLLS (Sect. 3.1)
and MICE2 (Sect. 3.2) data sets, where the only a priori
modification to the simulations is to ensure that both cover
the same underlying redshift baseline: 0.07 < ztrue < 1.42.
This ensures that this test probes the difference that is at-
tributable to the construction of the simulation for a consis-
tent population of source galaxies, rather than probing dif-
ferences in bias generated by different samples with different
redshift extent. Additionally, we opt to compute the differ-
ence between the recovered biases in the regime where we
do not include shape-measurements on the calibration side
of the computation, as the shape measurement weights are
systematically different between the simulations: MICE2
shape measurement weights are synthetic and determined
by matching colours to the observed data, rather than being
measured from images as in SKiLLS.

Resulting redshift distribution biases for our SKiLLS
and MICE2 data sets are presented in Table 5. The results
show that, for our analysis without calibration side weights
and only including the prior volume weights, we find consis-
tent redshift distribution bias parameters for the two simu-
lations at the level of |∆δz|<∼ 0.01. This indicates that there
is an inherent uncertainty floor in the accuracy to which we
can estimate the redshift distribution bias parameters from
our simulations, driven by the realism of the simulations
themselves. Such an error floor is in reality somewhat con-
servative, as the MICE2 simulations here are known to lack
realism in many regards (not the least of which is the lack
of imaging and the use of purely analytic photometric noise
realisations). As such, it is expected that these simulations
ought to diverge in their realism, with SKiLLS being the
more trustworthy reference. Nonetheless, we opt to utilise
this |∆δz|<∼ 0.01 systematic difference in our computation of
the redshift distribution bias priors, by implementing this
as an uncertainty floor in the prior specification.

6.2 CC redshift distributions

Similar to the SOM analysis, we first test our calibration
methodology on MICE2. Since we need to measure two-
point statistics on the simulation, we require a slightly dif-
ferent version from those reported in the section above; the
version used here applies the matching algorithm neither on
the calibration sample nor the photometric data to ensure
that the clustering properties of the resulting gold sample
are preserved. In addition, we find that, when comparing
the shift-fit values Dz (Eq. 5) to the SOM bias (Eq. 3), it is
preferential to compute the SOM bias as the difference in
the median of the redshift distribution instead of the mean,
i.e. defining

δzmed = med[NSOM(z)] −med[Ntrue(z)] . (7)

The reason is that the shift-fitting is not sensitive to any
outlier populations at the tails of the redshift distribution,
which are reflected in the mean, but not the median of the
distribution. These values are listed in column 2 of Table 6
and are computed from a single shear realisation.
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Table 6. Different redshift bias estimates per tomographic bin
obtained from the ensemble of MICE2 CC realisations. The val-
ues listed here are the median SOM bias, the mean and standard
deviation of the shift-fit parameter obtained by fitting the CCs
with the true redshift distribution, followed by fitting with the
NSOM(z), and finally the difference between the SOM bias and
the corresponding shift-fit parameter.

Bin δzmed ⟨DSOM
z ⟩ δzmed − ⟨DSOM

z ⟩

1 0.019 ± 0.010 0.014 ± 0.007 0.005 ± 0.012
2 0.058 ± 0.010 0.060 ± 0.006 −0.002 ± 0.012
3 0.049 ± 0.010 0.056 ± 0.006 −0.007 ± 0.011
4 0.018 ± 0.010 0.015 ± 0.006 0.003 ± 0.012
5 −0.004 ± 0.010 −0.016 ± 0.019 0.012 ± 0.022
6 −0.022 ± 0.012 −0.085 ± 0.071 0.063 ± 0.072

Notes. The results in this table are not directly comparable to
Table 5 as the source samples are inherently different. ⟨DSOM

z ⟩ is
duplicated from Table 7 for comparison.

6.2.1 CC measurements

As described in Sect. 5.4, we do not use the clustering red-
shift distributions that we measure directly from MICE2.
Instead, we first apply the noise adaptation scheme and
add the level of intrinsic scatter that we find in the data by
fitting the f -term (Eq. 6) on the data and create 100 re-
alisations of the intrinsic scatter. The mean and scatter of
these realisations are shown in Fig. 10. They closely trace
the underlying true redshift distribution of the simulated
KiDS-Legacy data (green line).

6.2.2 CCs fitted with true redshift distributions

First, we need to verify that our updated measurement pro-
cess and fitting procedure are able to accurately reproduce
the true redshifts of the MICE2 galaxies. Therefore, we
fit the CC measurements with the true redshift distribu-
tion to check whether the resulting shift parameter Dtrue

z
is consistent with zero in all bins. We compared a num-
ber of different correlation measurement scales and found
that excluding the smallest scales (r < 0.5 Mpc) results in
the least biased shift parameters, whereas setting the up-
per limit to 1.5 Mpc still maintains a good level of signal-
to-noise in the correlation amplitude. Therefore, we choose
0.5 < r ≤ 1.5 Mpc as fiducial measurement scale for KiDS-
Legacy.

The ensemble of parameter values from all realisations
of this setup, fitted with the true redshift distribution, is
listed in Table 7 and shown by the green data points in
Fig. 11. Most importantly, all shift-fit values are consistent
with zero and |⟨Dtrue

z ⟩|< 0.01 (except for bin six), demon-
strating that our new methodology is able to produce unbi-
ased estimates of the underlying true redshift distribution.
In the first four tomographic bins, where most of the red-
shift distributions are covered by the wide area samples
2dFLenS, BOSS, and GAMA, the scatter in Dtrue

z is 0.005.
In bins five and six, which are dominated by the CCs from
DESI, the scatter is significantly larger (0.017 and 0.044)
with the largest shift of ⟨Dtrue

z ⟩ = −0.015 in bin six.
We find that our fitting approach with the additional er-

ror term, accounting for the intrinsic scatter, is able to (on
average) reproduce the input value from the measurements

of the data. The scatter of the f -values between realisations
is similar to the uncertainty of the input value. The distri-
bution of goodness-of-fit values is consistent with χ2/dof = 1
in all bins, as we expect given the ability of the model to
increase the magnitude of the uncertainty.

6.2.3 CCs fitted with SOM redshift distributions

The second step of verifying our pipeline is fitting the mock
CCs with the SOM redshift distributions and comparing the
shift parameters to the bias in the median SOM redshift
(δzmed). Ideally, both values should be in agreement if the
difference between the CCs and NSOM(z) can, to first order,
be rectified by a simple shift in redshift.

The goodness of fit for these fits is, similar to the case of
fitting with the true redshift distributions above, consistent
with χ2

dof = 1. The fitted f -values are up to 50 % larger
compared to the previous case but, with the exception of
bin one, fully consistent with the input values from the data
when considering the uncertainty and the scatter between
the realisations (see Table 7). The shift-parameter values
are much larger when using the NSOM(z) as fit model and
only consistent with zero in bin five; see the red data points
in Fig. 11. In bins one to four, ⟨DSOM

z ⟩ is largely positive,
indicating that the SOM overestimates the median redshift
by about 0.015 in bins one and four and up to 0.060 in bin
two. In general, the scatter in DSOM

z is similar to the ones
obtained from the fits with the true redshift distribution.

While these values indicate a large bias in the SOM
redshifts, they are perfectly consistent with the SOM bias
reported for this specific version of MICE2 (compare Ta-
ble 6 and the blue confidence regions in Fig. 11). When we
take the difference δzmed − ⟨DSOM

z ⟩ of both bias estimates,
the value is consistent with zero considering the scatter of
DSOM

z between the noise realisations, as indicated by the
black data points in Fig. 11. The scatter is about 0.012 in
the first four bins and 0.022 and 0.072 in bins five and six,
respectively. The amplitude of the difference is less than
0.01 in all but the last two tomographic bins, of which es-
pecially bin six is poorly constrained.

Finally, we can confirm visually in Fig. 10 that applying
the shift to the NSOM(z) on MICE2 results in a much better
match with the CCs than the unshifted redshifts. Especially
in bins two and three, where ⟨DSOM

z ⟩ is large, the peak of
the distribution closely matches the realisations of the CCs
after shifting. There are some remaining residual differences
near the tails of the distributions, which probably explain
the increase in the best-fit f -values.

7 Data Results

7.1 SOM redshift distributions

Figure 12 presents the redshift distributions estimated for
the six tomographic bins using the SOM algorithm, for a
range of different analysis choices. The results are largely
indistinguishable from one-another, except that there are
two sets of lines; those using the prior volume weighting and
those without. As shown in Sect. 4.3, this is for two reasons.
Firstly the prior volume weight acts to smooth the large-
scale structure that is imprinted on the redshift distribution
of the calibration sample, leading to smoother estimates
of the wide-field N(z). Secondly, as shown in Fig. 6, the
prior volume weights are able to introduce systematic shifts
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Fig. 10. Comparison of the ensemble of MICE2 realisations and their best-fit solutions when using the SOM redshift distributions as
model for the shift-fit. The black data points indicate the mean and standard deviation (encapsulating the added intrinsic scatter)
of the CC measurement realisations, the green and blue lines represent the true and SOM redshift distributions, respectively. The
blue line and shaded area (median and 68 % confidence interval) is the NSOM(z) after applying the shift-fit parameter value in each
realisation.

Table 7. Summary of the parameters and goodness of fit obtained from the shift-fits on the data and the 100 MICE2 realisations
with noise adaptation. The uncertainties quoted for MICE2 refer to the standard deviation of the realisations, not the error of the
mean.

Data set Fit model Tomographic Bin

1 2 3 4 5 6

Data SOM n(z)
Dz 0.000 ± 0.007 0.028 ± 0.006 0.021 ± 0.006 0.035 ± 0.010 −0.018 ± 0.028 −0.145 ± 0.091
f 0.06 ± 0.03 0.10 ± 0.03 0.08 ± 0.03 0.06 ± 0.03 0.07 ± 0.03 0.07 ± 0.04
χ2

dof 1.44 1.04 1.11 1.03 1.04 1.14

MICE2
realisations

True n(z)
⟨Dz⟩ 0.003 ± 0.005 0.002 ± 0.005 0.005 ± 0.005 −0.004 ± 0.007 −0.008 ± 0.017 −0.015 ± 0.044
⟨ f ⟩ 0.10 ± 0.02 0.12 ± 0.04 0.11 ± 0.03 0.09 ± 0.03 0.07 ± 0.03 0.09 ± 0.03
⟨χ2

dof⟩ 0.99 ± 0.08 1.01 ± 0.09 1.02 ± 0.10 1.04 ± 0.12 0.96 ± 0.14 0.98 ± 0.17

SOM n(z)
⟨Dz⟩ 0.014 ± 0.007 0.060 ± 0.006 0.056 ± 0.006 0.015 ± 0.006 −0.016 ± 0.019 −0.085 ± 0.071
⟨ f ⟩ 0.15 ± 0.02 0.13 ± 0.04 0.15 ± 0.03 0.10 ± 0.03 0.09 ± 0.03 0.11 ± 0.04
⟨χ2

dof⟩ 0.97 ± 0.06 0.98 ± 0.08 0.97 ± 0.07 1.01 ± 0.10 0.97 ± 0.10 1.05 ± 0.15

Notes.
Dz: N(z) shift parameter (see Eq. 5)
f : additive error term (see Eq. 6)

in the tomographic redshift distributions of the calibration
sample before SOM reweighting. The shifts in Fig. 12 are
less significant than the example shown in Fig. 6, however,
demonstrating that the SOM reweighting has acted to undo
some of the prior weight shift.

The resulting N(z) in Fig. 12 are each associated with an
estimated bias, and it is worth noting that the difference in
the redshift distributions is almost perfectly compensated
by the change in bias predicted by SKiLLS. Said differently,
the response of the data N(z) to the prior weight is exactly
the same as the response of the simulated N(z) to the prior
weight. This is a further indication that the simulated anal-
ysis used to estimate the bias parameters faithfully repro-
duces the complexity of the real data.

Finally, we note the similarity between the redshift dis-
tributions estimated on the data and on the simulations.

In particular bins two to five are essentially identical as
estimated on SKiLLS and on the data. Bin six shows the
most significant differences: the simulated redshift distribu-
tion has a considerable smoothly decreasing tail extending
to redshift two, whereas the data N(z) all truncate fairly
abruptly at z ≈ 1.6. We have not explored the origin of this
difference here, but note that such a difference will be en-
hanced by slight differences in the signal-to-noise and size
properties of the most distant sources. We have attempted
to remove such differences using our matching process, how-
ever this difference may indicate that there is still some
residual difference between the data and mock galaxies at
high redshift.
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Fig. 11. Mean and scatter of the shift parameters obtained from
the 100 MICE2 realisations with noise adaptation. The blue line
and shaded area indicate the bias in the median SOM redshift,
the green and red data points indicate the mean and scatter
of the shift-fit parameters Dz when fitting the realisations with
either the true or SOM redshift distribution. The black data
points represent the difference between the empirical SOM bias
estimate and the shift-fit parameter.

7.2 CC redshift distributions

Similar to the mock analysis in Sect. 6.2.3, we measure
the clustering redshifts of the KiDS-Legacy lensing sample,
compute the joint, inverse-variance weighted CC estimate,
and perform the shift-fitting with the fiducial SOM redshift
distributions (see above). The final CC measurements are
presented in Fig. 13. In general, these are (in part due to
the noise adaptation) very similar to the ensemble average
of the MICE2 realisations (Fig. 10).

7.2.1 CCs fitted with SOM redshifts

As a result, the shift-fit parameters DSOM
z follow as similar

trend as those of MICE2 (Table 7). One major difference
is that there is some additional intrinsic scatter, especially
at z > 1.0, where DESI dominates the joint CC measure-
ments, that our simple f -term model cannot fully capture.
The best-fit f -term is just a small fraction of the total un-
certainty of the CC measurements10 (Fig. 13).

This difference is also reflected in the increased uncer-
tainty of DSOM

z in the last three tomographic bins, where
it reaches σ(DSOM

z ) = 0.091 in bin six. Since we are limited
to the maximum redshift of our DESI sample at z ≈ 1.6,
the consequence is that the mean redshift of bin six is not
very well constrained by the clustering redshifts. In the five
other bins, the uncertainty is at a similar level as MICE2.
The magnitude of the shifts is in general smaller for the
first three tomographic bins, reaching a maximum of 0.028
in bin two, which is clearly in agreement with visible offset
between the SOM and the CCs in Fig. 13. In bins four and
five, the magnitude of the shift is similar to bins two and
three, but in bin six it reaches DSOM

z = −0.145, preferring a
shift of the NSOM(z) at low significance to higher redshifts.
Overall, only bins one and five are unbiased according to
the shift-fit after taking the uncertainties into account.

10 When including smaller measurement scales, the f -term con-
tribution becomes significant.

Table 8. Different redshift bias estimates per tomographic bin
obtained from the KiDS-Legacy data. The values listed here are
the fiducial mean and median SOM bias obtained from SKiLLS
(Sect. 6.1.1), followed by the shift-fit parameter obtained by fit-
ting the CCs with the SOM redshifts, and finally the difference
between the median SOM bias and the shift-fit parameter.

Bin δzSKiLLS
mean / δzSKiLLS

med DSOM
z δzSKiLLS

med − DSOM
z

1 −0.026 / −0.002 ± 0.010 0.000 ± 0.007 −0.002 ± 0.012
2 0.013 / 0.015 ± 0.010 0.028 ± 0.006 −0.014 ± 0.011
3 −0.001 / 0.006 ± 0.010 0.021 ± 0.006 −0.014 ± 0.012
4 0.008 / 0.005 ± 0.010 0.035 ± 0.010 −0.030 ± 0.014
5 −0.011 / −0.005 ± 0.010 −0.018 ± 0.028 0.013 ± 0.030
6 −0.054 / −0.056 ± 0.011 −0.145 ± 0.091 0.089 ± 0.092

Notes. The uncertainties of δzmean and δzmed are identical to the
third decimal place after applying the error floor. DSOM

z is dupli-
cated from Table 7 for comparison.

7.2.2 Comparison to SOM bias from SKiLLS

As a final test, we can use fitted shift-parameters DSOM
z to

test how well the SOM calibration of the SKiLLS simula-
tion is representative of the SOM calibration of the KiDS-
Legacy data. Similar to our analysis of the MICE2 data
(Sect. 6.2.3) we compare DSOM

z to the bias of the median
SOM redshifts obtained from SKiLLS (see Table 8 and
Fig. 14) and find that they are not identical, but closely
follow the same trends. The bias is consistent with zero in
bin one, positive for bins two to four, and smoothly tran-
sitions to negative values in bins five and six. In general,
the biases indicated by the DSOM

z are somewhat larger than
the SOM biases in SKiLLS. However, when factoring in the
uncertainties, the difference δzmed −DSOM

z is consistent with
zero in all bins, except for bin 4, which exhibits an approx-
imately 2σ difference, again driven by the CCs preferring
larger measured biases.

This comparison also highlights that DSOM
z is most

closely comparable to the median SOM bias instead of the
mean. In particular, the mean redshift of bin one is very sen-
sitive to small fractions of high-redshift, catastrophic outlier
populations, to which the measured CCs and the core of the
NSOM(z), and in turn DSOM

z , are insensitive.

8 Discussion

The results presented in the previous sections form the ba-
sis for measurements of weak gravitational lensing with the
KiDS-Legacy data set. Using extensive mock catalogues,
we quantify the precision and accuracy of the redshift cali-
bration of the six tomographic bins used in those measure-
ments. In the following, we highlight the most important
aspects and lessons learned from this calibration effort.

We rely heavily on mock catalogues that resemble the
KiDS and KiDZ data in many important aspects (colour-
redshift relation, photometric noise level, photo-z quality,
clustering properties, etc.). This reliance makes it necessary
to introduce redundancy in the underlying simulations to
test the robustness of the results to the assumptions in the
creation of the simulations. The two simulations used in this
work are quite different. SKiLLS is based on a semi-analytic
galaxy model, a full simulation of KiDS/VIKING images,
and a replication of the KiDS photometry and shape mea-
surement pipelines on these synthetic images. It also ex-

Article number, page 19 of 25



A&A proofs: manuscript no. output

0.0

1.0

2.0

3.0

4.0
PD

F

0.0 0.5 1.0 1.5 2.0 2.5
z

0.0

1.0

2.0

3.0

PD
F

0.0 0.5 1.0 1.5 2.0 2.5
z

0.0 0.5 1.0 1.5 2.0 2.5
z

ZB range
without Shape weight
without PV weight
Fiducial

Fig. 12. Estimated redshift distributions from the SOM method, for different analysis choices. Results are highly consistent, except
when switching between use or non-use of the prior volume weighting. However, as described in Sect. 4.3, this difference is shown
to be reflected in an increased bias for the non-prior-weighted distributions.
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Fig. 13. Comparison of the fiducial data CCs, SOM redshift distributions (used as fit model, re-normalised to the fitted amplitude
of the CCs, and additionally with the estimated SOM bias corrected), and shift-fit posterior median and 68 % confidence interval.
The additional grey error bar whiskers indicate the total confidence interval that includes the fitted intrinsic scatter.

tends to high redshifts (z < 2.3) covering the whole redshift
range of interest for KiDS. Our MICE2 mocks are more sim-
plistic as we do not implement a full image simulation here,
employ a parametric model for photometric noise, and add
shape measurement weights in a rather ad-hoc way. Also,
MICE2 is limited to z < 1.4, which compromises its ability
to calibrate the highest redshifts probed by KiDS. However,
it covers a much larger area than SKiLLS, which makes it
useful for clustering redshift analyses.

Most importantly, the two simulations are inherently so
different that any agreement of the calibration results be-

tween SKiLLS (truncated at z < 1.4 for comparison) and
MICE2 can be regarded as a strong sign of systematic ro-
bustness. This is exactly what we observe with the SOM
calibration for the calibration samples that are most compa-
rable between the two simulations, i.e. the samples without
lensfit weights (as those weights are not entirely realistic in
MICE2), see the ∆⟨δz⟩ rows of scenarios [J] (vs. [H]) and
[K] (vs. [I]) in Table 5. While the actual calibration sample
used in the cosmological analysis looks slightly different (i.e.
using shape weights) and the redshift bias values themselves
will be different (e.g. compare ⟨δz⟩ of scenarios [A] and [E]),
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Fig. 14. Comparison of the shift parameters obtained from the
KiDS-Legacy data and the SOM bias obtained from SKiLLS.
The short gray and blue lines indicate the bias in the mean and
median SOM redshift, the red data points the shift-fit param-
eters Dz when fitting CC measurements with the NSOM(z). The
black data points represent the difference between the empirical
median SOM bias estimate and the shift-fit parameter.

there is no reason to assume that the robustness is affected
by these differences. Hence, we use the reported ∆⟨δz⟩ to mo-
tivate a conservative systematic error floor of δz = 0.01 for
our SOM results. Hence, the SKiLLS SOM results, verified
with the MICE2 SOM runs, yield a primary, simulation-
based validation of the SOM N(z) on the KiDS data at the
per cent level in terms of the mean redshift, which is exactly
what is required for the full, uncompromised cosmological
exploitation of cosmic shear with KiDS.

The CC methodology with the KiDS-Legacy calibration
samples is tested extensively on MICE2 and shown to be
unbiased within errors if the true N(z) are being used as
a model in the shift fit. The goodness-of-fit is satisfactory
when we inflate the errors of the CC measurements and the
noise according to what we observe on the data. The neces-
sity for this adaptation highlights a possible shortcoming of
the MICE2 simulations that do not seem to replicate the
full complexity of systematic effects in the data. Still, with
this adaptation, the similarity between the CC measure-
ments on the data and simulations gives us confidence in
the applicability of the MICE2 results.

Most importantly for our efforts, the CC method is able
to correct the bias inherent to the SOM N(z) on MICE2
when those are used as a model in the shift fit. This non-
trivial result reported in Fig. 11 and Table 6 establishes the
CC as a secondary, data-based method for N(z) validation.

The crucial question is then whether the highly comple-
mentary primary and secondary validation methods agree
on the data. This is answered positively by Fig. 14. The
residual bias of the KiDS SOM N(z) suggested by SKiLLS
agrees with the bias suggested by shift-fitting the KiDS
SOM N(z) to the KiDS CC measurements. The only excep-
tion is bin four, which exhibits a 2σ shift towards negative
values, however such a single shift will not have a significant
impact on the cosmological results. Both methods of vali-
dation are similarly precise in the first three tomographic
bins. In bins five and six, the clustering redshifts still suf-
fer from limited calibration samples and possibly further
systematics that affect the increasingly faint target sam-

ples, e.g. spurious density variations due to variable depth,
seeing, etc.

The residual biases and their uncertainties can be di-
rectly translated into priors on the mean redshifts used in
the cosmological inference of KiDS cosmic shear measure-
ments. The discussion above motivates at least two main
scenarios, one that relies fully on the SOM N(z) and their
calibration with SKiLLS and a second one using the SOM
N(z) but calibrated with the CC measurements instead. It
is clear that in the latter case the very loose priors on the
mean redshifts of bins five and six would severely com-
promise the constraining power of these bins. So this CC-
calibrated setup would constitute a very conservative ap-
proach. Even the tighter, SKiLLS-calibrated priors should
still be regarded as conservative because the error floor in-
troduced due to residual differences between the SOM runs
on SKiLLS (truncated) and MICE2 is erring on the side
of caution. There are very good reasons to believe in the
superiority of the SKiLLS results. If we took those at face
value, we would end up with priors on the mean redshifts
that approach the level of completed stage-IV cosmic shear
surveys (see row σδz of scenario [A] of Table 5).

9 Summary

In this paper, we present the redshift calibration of the
final KiDS WL data set dubbed KiDS-Legacy and based on
KiDS-dr5. We develop a calibration strategy that involves
multiple levels of redundancy to ensure that we meet the
requirement of an accuracy in the mean redshifts of the
tomographic bins used for cosmic shear at the per cent level.

The first level of redundancy is represented by the use
of two complementary sets of mock catalogues extracted
from two quite different types of simulations, SKiLLS and
MICE2. Using a newly developed matching algorithm, we
arrive at mock catalogues that are highly realistic and em-
ulate the data – the KiDS WL sources as well as spectro-
scopic calibration samples – with high fidelity.

The second level of redundancy is represented by two
different calibration techniques, a colour-based SOM cali-
bration and a position based clustering redshift technique.
This combination has become the standard in contempo-
rary WL analyses and is further strengthened here by an
extensive overlap of KiDS-dr5 with different spectroscopic
surveys and an almost complete disconnect of the spectro-
scopic calibration samples used for either technique.

We show – in essence – that running the SOM on one
simulation can be used to calibrate the WL sources in the
other simulation with residual bias ⟨δz⟩ <∼ 0.01. Given that
we estimate the match between the more sophisticated sim-
ulation, SKiLLS, and the KiDS data to be at least as good
as the match between SKiLLS and MICE2, we are confi-
dent that SKiLLS can calibrate the SOM N(z) of KiDS at
the same level of accuracy or better. The great similarity
of the N(z) of the simulated SKiLLS sources and the N(z)
estimated with the SOM on the data further justifies the
applicability of this conclusion to the KiDS data set.

Additionally, we show that the clustering redshifts are
able to correct for any residual bias in the SOM N(z) on
the MICE2 simulation. With this result in mind, we run
the clustering redshift technique on the data, shift-fitting
the SOM N(z) to the clustering measurements, and find-
ing biases that agree with the purely simulated bias es-
timates from SKiLLS. This again mirrors the results of
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MICE2 clustering-z vs. SKiLLS SOM N(z), which further
validates the realism of the simulations. Passing this strong
consistency test suggests a robust calibration and a suc-
cessful understanding and correction of systematic errors
at the per cent level in terms of the mean redshifts of the
tomographic bins.

These results will be used to define the (correlated) pri-
ors on the mean redshifts of the tomographic bins in the
upcoming KiDS-Legacy cosmic shear analyses. A SKiLLS-
based SOM N(z) calibration with a conservative error floor
of ⟨δz⟩ = 0.01 will constitute the fiducial setup. As an alter-
native, we will also present a purely empirical, somewhat
less constraining setup that takes the clustering redshift re-
sults as (uncorrelated) priors that make the cosmological
conclusions independent of simulations of the redshift cali-
bration.

With the kind of data used here, we reach statistical
uncertainties on the mean redshifts with our SOM imple-
mentation of σ(⟨δz⟩) ≈ 0.002, which is right in the range
of the requirement for Euclid. This suggests that in terms
of methodology and calibration data, we are almost ready
to calibrate a stage-IV cosmic shear survey. Certainly, the
redshift range has to be extended to z ∼ 2, but this is well
within reach. The real challenge will be to reduce the sys-
tematic error floor, conservatively estimated here, by about
a factor of five. This will require a set of a few highly re-
alistic, complementary simulations that capture the whole
complexity of a future cosmic shear experiment.

The statistical uncertainties on the clustering redshifts
shown here are still at least a factor of three larger than
those Euclid requirements. With an order of magnitude
more area in the WL samples and the full power of upcom-
ing wide-field spectroscopic calibration samples (a glimpse
is given here with just ∼ 105 DESI EDR galaxies), this fac-
tor of three is within reach. The systematic error control
will be paramount here as well and similarly achieved with
redundancy in the simulations that validate the calibration.
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A Sample selection function for MICE2

In our clustering redshift analysis with simulated data
based on MICE2 we aim to replicate the observational data
sets as closely as possible. Since we added spectroscopic
data from the DESI EDR and VIPERS PDR-2, we also need
to implement their selection functions for MICE2, similar
to the procedure already adopted in van den Busch et al.
(2020). Where possible, we apply the same selection criteria
used for the spectroscopic target selection and use sampling
strategies to implement additional selection effects, such as
spectroscopic success rates, and to mitigate systematic dif-
ferences between MICE2 and the observed data sets.

A.1 DESI EDR data

We use a subset (called the LSS catalogues) of the DESI
LRG and ELG samples for the KiDS-Legacy clustering red-
shifts. The target selection for the ELG sample is a simple
colour-magnitude cut, which can, in principle, be applied
directly to MICE2. The LRG sample, however, and some
of the additional selections applied for the construction of
the LSS catalogues, depend on observed quantities to which
we do not have access to in MICE2. Therefore, we decided
to implement the DESI selection function for MICE2 by
mostly relying on sampling techniques.

We select the LRG and ELG sample jointly by perform-
ing a number of selection steps. First, we split the DESI
data and MICE2 into bins of redshift (∆z = 0.05). In each
of these bins we compute the expected number of ELGs,
LRGs, and (although not utilised) QSOs. Then we take the
MICE2 data and randomly draw the appropriate number
QSOs by requiring 19.5 < r < 23.4 without any further se-
lections (MICE2 does not contain any QSOs specifically)
and discard them. From the remaining MICE2 galaxies we
then select the expected number of ELGs by picking the
objects with the highest specific star formation rate that
fall into the magnitude window 20.0 < g < 24.1. Finally,
we draw the expected number of LRGs from those MICE2
galaxies that are not already assigned to either the QSO
or ELG sample. We select objects with the highest stellar
mass and magnitude z < 21.61. This procedure ensures that
the MICE2 DESI sample has the correct redshift distribu-
tion by design. Figure A.1 shows the distribution of stellar
mass and star-formation rate of galaxies in all of MICE2
and those in our simulated DESI subset. The LRG and
ELG subsets are clearly separated in stellar mass, the ELG
sample contains mostly objects with low stellar mass but
high star-formation rate.

To verify our new selection function we compare its clus-
tering amplitude wss with the one we obtain from DESI. We
measure the angular correlation between 100 and 1000 kpc
and find a good agreement between simulation and data
for most redshifts except around the redshifts 0.85 and 1
(see Fig. A.2). Since we are already selecting objects with
low stellar mass in our ELG selection (for which we already
expect a lower galaxy bias and therefore a lower clustering
amplitude, see e.g. Coil et al. 2017), we speculate that this
may be an inherent property of MICE2.

A.2 VIPERS data

VIPERS targets galaxies with magnitude iAB ≤ 22.5 and an
additional colour selection that aims to isolate galaxies at
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Fig. A.1. Comparison of star-formation rate (top) and stellar
mass (bottom) for the full MICE simulation (gray) and our sim-
ulated DESI LRG and ELG samples (blue) as a function of red-
shift. The data is selected from a 44 deg2 patch of MICE2. The
lower panel clearly shows the separation of the ELG from the
LRG sample, which is selected based on stellar mass.
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Fig. A.2. Auto-correlation amplitude measured between 100 and
1000 kpc for DESI (in blue) and MICE2 (in red).

z > 0.5 (Scodeggio et al. 2018):

(r − i) > 0.5 × (u − g) OR (r − i) > 0.7 . (A.1)

We apply the same selection criteria to MICE2.
This colour selection (colour sampling rate; CSR) leads

to a completeness that transitions from almost zero to one
in the range of 0.4 < z < 0.6. There are two additional effects
that need to be factored in to obtain the total complete-
ness of the sample; the target sampling rate (TSR), which
is about 50 % on average but has a strong positional de-
pendence due to observational and instrumentational limi-
tations, and the spectroscopic success rate (SSR). The total
completeness is a product of these three terms and VIPERS
defines a weight to account for this incompleteness as

w =
1

CRS × TSR × SSR
. (A.2)

For our purposes, we choose to not model the posi-
tional dependence of the TSR and simply estimate the mean
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Fig. A.3. Comparison of the VIPERS redshifts distribution (in
blue) in the range 0.6 ≤ z < 1.18 and MICE2 (in red) after apply-
ing the colour/magnitude cuts and the empirical incompleteness
sampling, indicated by the total success rate (black line).
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Fig. A.4. Auto-correlation amplitude measured between 100 and
1000 kpc for VIPERS (in blue) and MICE2 (in red).

incompleteness weight empirically in the redshift range
0.6 ≤ z < 1.18 (see Sect. 2.1), as shown in Fig. A.3. When
applied to MICE2 together with the VIPERS colour se-
lection, we find that this approach reproduces the redshift
distribution p(z) of the VIPERS data set very well. How-
ever, we need to apply an additional sparse sampling by
30 % to match the absolute number density found in the
data. Similar discrepancies have been reported by van den
Busch et al. (2020) when trying to reproduce the selection
functions of other high redshift data sets and is most likely
explained by systematic differences between MICE2 and the
observational data.

Similar to DESI, we verify our new selection function by
comparing its clustering amplitude wss with the one we ob-
tain from VIPERS. We measure on the same scales from 100
and 1000 kpc and find a good agreement between simulation
and data, both in the amplitude as well as its uncertainty
over the full redshift baseline (Fig. A.4).
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